有三张卡片(背面完全相同)分别写有
,(
)
-1,|-3|,把它们背面朝上洗匀后,小军从中抽取一张,记下这个数后放回洗匀,小明又从中抽出一张.
(1)两人抽取的卡片上的数是|-3|的概率是______.
(2)李刚为他们俩设定了一个游戏规则:若两人抽取的卡片上两数之积是有理数,则小军获胜,否则小明获胜,你认为这个游戏规则对谁有利?请用列表法或树状图进行分析说明.
考点分析:
相关试题推荐
甲、乙两同学只有一张乒乓球比赛的门票,谁都想去,最后商定通过转盘游戏决定.游戏规则是:转动下面平均分成三个扇形且标有不同颜色的转盘,转盘连续转动两次,若指针前后所指颜色相同,则甲去;否则乙去.(如果指针恰好停在分割线上,那么重转一次,直到指针指向一种颜色为止)
(1)转盘连续转动两次,指针所指颜色共有几种情况?通过画树状图或列表法加以说明;
(2)你认为这个游戏公平吗?请说明理由.
查看答案
如图所示,甲、乙两人在玩转盘游戏时,准备了两个可以自由转动的转盘A、B,每个转盘被分成面积相等的几个扇形,并在每一个扇形内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所指区域的数字之和为0时,甲获胜;数字之和为1时,乙获胜.(如果指针恰好指在分割线上,那么重转一次,直到指针指向某一区域为止)
(1)用树状图或列表法求乙获胜的概率;
(2)这个游戏规则对甲乙双方公平吗?请判断并说明理由.
查看答案
有形状、大小和质地都相同的四张卡片,正面分别写有A、B、C、D和一个等式,将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.
(1)用画树状图或列表的方法表示抽取两张卡片可能出现的所有情况(结果用A、B、C、D表示);
(2)小明和小强按下面规则做游戏:抽取的两张卡片上若等式都不成立,则小明胜,若至少有一个等式成立,则小强胜.你认为这个游戏公平吗?若公平,请说明理由;若不公平,则这个规则对谁有利,为什么?
查看答案
一个不透明的口袋里装有红、黄、绿三种颜色的小球(除颜色不同外其余都相同),其中红球2个(分别标有1号、2号),黄球1个,从中任意摸出1球是绿球的概率是
.
(1)试求口袋中绿球的个数;
(2)小明和小刚玩摸球游戏:第一次从口袋中任意摸出1球(不放回),第二次再摸出1球.两人约定游戏胜负规则如下:
你认为这种游戏胜负规则公平吗?请用列表或画树状图的方法说明理由;若你认为不公平,请修改游戏胜负规则,使游戏变得公平.
查看答案
某中学九年级有8个班,要从中选出两个班代表学校参加社区公益活动.各班都想参加,但由于特定原因,一班必须参加,另外从二至八班中再选一个班.有人提议用如下的方法:在同一个品牌的四个乒乓球上分别标上数字1,2,3,4,并放入一个不透明的袋中,摇匀后从中随机摸出一个乒乓球,记下数字,放回袋中混合均匀,再摸出一个球,记下数字,两次球上的数字和是几就选几班,你认为这种方法公平吗?请用列表或画树状图的方法说明理由.
查看答案