小明和小丽做如下游戏:任意掷出两枚均匀且完全相同的硬币,若朝上的面相同,则小明获胜;若朝上的面不同,则小丽获胜.小丽认为:朝上的面相同有“两个正面”和“两个反面”两种情况;而朝上的面不同只有“一正一反”一种情况,因此游戏对双方不公平.你认为呢?请利用树状图(或列表)的方法表示游戏所有可能出现的结果,并求出两人获胜的概率,然后再作出判断.
考点分析:
相关试题推荐
小明和小慧玩纸牌游戏.如图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小明先从中抽出一张,小慧从剩余的3张牌中也抽出一张.
小慧说:若抽出的两张牌的数字都是偶数,你获胜;否则,我获胜.
(1)请用树状图表示出两人抽牌可能出现的所有结果;
(2)若按小慧说规则进行游戏,这个游戏公平吗?请说明理由.
查看答案
小昆和小明玩摸牌和转转盘游戏,游戏规则如下:先摸牌,有两张背面完全相同、牌面数字是2和6的扑克牌,背面朝上洗匀后从中抽出一张,抽得的牌面数字即为得分:后转动一个转盘.转盘被分4个相等的扇形,并标上1,2、3、4,转盘停止后,指针所在区域的数字即为得分(若指针在分格线上,则重转一次,直到指针指向某一区域为止).
(1)利用树状图或列表的方法(只选其中一种)表示出游戏可能出现的所有结果;
(2)若两次得分之和为总分,写出所有的总分.小昆和小明约定:总分是3的倍数,则小昆获胜;总分不是3的倍数,则小明获胜,这个游戏公平吗?为什么?
查看答案
甲、乙两同学设计了这样一个游戏:把三个完全一样的小球分别标上数字1、2、3后,放在一个不透明的口袋里,甲同学先随意摸出一个球,记住球上标注的数字,然后让乙同学抛掷一个质地均匀的、各面分别标有数字1、2、3、4、5、6的正方体骰子,又得到另一个数字,再把两个数字相加.若两人的数字之和小于7,则甲获胜;否则,乙获胜.
(1)请你用列表法或画树状图把两人所得的数字之和的所有结果都列举出来;
(2)这个游戏公平吗?请说明理由;如果不公平,请你加以改进,使游戏变得公平.
查看答案
不透明的口袋里装有3个球,这3个球分别标有数字1,2,3,这些球除了数字以外都相同.
(1)如果从袋中任意摸出一个球,那么摸到标有数字是2的球的概率是多少?
(2)小明和小东玩摸球游戏,游戏规则如下:先由小明随机摸出一个球,记下球的数字后放回,搅匀后再由小东随机摸出一个球,记下球的数字.谁摸出的球的数字大,谁获胜.现请你利用树状图或列表的方法分析游戏规则对双方是否公平?并说明理由.
查看答案
桌面上放有质地均匀、反面相同的3张卡片,正面分别标有数字1,2,3,这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出1张,记下卡片上的数字后仍反面朝上放回洗匀,乙再从中任意抽出1张,记下卡片上的数字,然后将这两数相加.
(1)请用列表或画树状图的方法求两数和为4的概率;
(2)若甲与乙按上述方式做游戏,当两数之和为4时,甲胜,反之则乙胜;若甲胜一次得6分,那么乙胜一次得多少分,这个游戏才对双方公平?
查看答案