满分5 > 初中数学试题 >

如图,△ABC中,点D在AC上,点E在BC上,且DE∥AB,将△CDE绕点C按顺...

如图,△ABC中,点D在AC上,点E在BC上,且DE∥AB,将△CDE绕点C按顺时针方向旋转得到△CD′E′(使∠BCE′<180°),连接AD′、BE′,设直线BE′与AC、AD′分别交于点O、E.
(1)若△ABC为等边三角形,则manfen5.com 满分网的值为1,求∠AFB的度数;
(2)若△ABC满足∠ACB=60°,AC=manfen5.com 满分网,BC=manfen5.com 满分网,①求manfen5.com 满分网的值和∠AFB的度数;②若E为BC的中点,求△OBC面积的最大值.
manfen5.com 满分网
(1)求的值,可以通过证明△CBE′≌△CAD′,得到AD′=BE′求出,求∠AFB的度数,通过△AOF与△BOC比较得出; (2)求的值和∠AFB的度数,可以通过证明△CBE′∽△CAD′得到;要求△OBC面积的最大值,因为∠ACB=60°,BC=,即求CO的最大值,用面积公式结合三角函数可以得出. 【解析】 (1)连接D'E', ∵△ABC为等边三角形,DE∥AB, ∴△CED,△CD'E'为等边三角形. ∴CD'=CE',∠BCA+∠ACE′=∠D′CE′+∠ACE′即∠BCE′=∠D′CA,AC=CB ∴△CBE′≌△CAD′(SAS), ∴∠CAF=∠CBO,AD′=BE′, ∴的值为1, ∵∠CAF=∠CBO, ∴∠ABO+∠BAF=120°, ∴∠AFB=60°. (2)∵AC=,BC=,DE∥AB, ∴CA:CB=:,CD:CE=:=CD′:CE′, ∴CA:CB=CD′:CE′=:, ∵∠BCE′=∠D′CA, ∴△CBE′∽△CAD′, ∴=,∠CBF=∠CAD′, ∵∠BOC=∠AOF, ∴∠AFB=∠ACB=60°:当CO=,△OBC面积的最大值=0.5BC•sin∠ACB•CO=.
复制答案
考点分析:
相关试题推荐
如图1,△ABC为等边三角形,面积为S.D1,E1,F1分别是△ABC三边上的点,且AD1=BE1=CF1=manfen5.com 满分网AB,连接D1E1,E1F1,F1D1,可得△D1E1F1
(1)用S表示△AD1F1的面积S1=manfen5.com 满分网,△D1E1F1的面积S1′=manfen5.com 满分网
(2)当D2,E2,F2分别是等边△ABC三边上的点,且AD2=BE2=CF2=manfen5.com 满分网AB时,如图②,求△AD2F2的面积S2和△D2E2F2的面积S2′;
(3)按照上述思路探索下去,当Dn,En,Fn分别是等边△ABC三边上的点,且ADn=BEn=CFn=manfen5.com 满分网AB时(n为正整数),求△ADnFn的面积Sn,△DnEnFn的面积Sn′.

manfen5.com 满分网 查看答案
某课外学习小组在设计一个长方形时钟钟面时,欲使长方形的宽为20厘米,时钟的中心在长方形对角线的交点上,数字2在长方形的顶点上,数字3,6,9,12标在所在边的中点上,如图所示.
(1)当时针指向数字2时,时针与分针的夹角是多少度?
(2)请你在长方框上点出数字1的位置,并说明确定该位置的方法;
(3)请你在长方框上点出钟面上其余数字的位置,并写出相应的数字(说明:要画出必要的、反映解题思路的辅助线);
(4)问长方形的长应为多少?

manfen5.com 满分网 查看答案
(1)计算:(2-sin60°)+(manfen5.com 满分网-1-(-manfen5.com 满分网2+|-tan45°|;
(2)解不等式:2(x-1)<3(x+1)-2,并把它的解集在数轴上表示出来.
查看答案
解答下列各题:
(1)计算:manfen5.com 满分网
(2)若关于x的一元二次方程x2+4x+2k=0有两个实数根,求k的取值范围及k的非负整数值.
查看答案
(1)计算:sin30°+2-1-(manfen5.com 满分网-1)+|-5|;
(2)解方程:x2-2x-2=0.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.