课本中有这么一个例题:“如图,河对岸有一水塔AB.在C处测得塔顶A的仰角为30°,向塔前进12米到达D,在D处测得A的仰角为45°,求水塔AB的高”.
解这个题时,我们通常时这样去想的(分析):要求水塔AB的高,只要去寻找AB于已知量之间的关系.在这里,由于难以找到四个量之间的直接关系,我们可引进一个或两个中间量.以此作为媒介,再寻找这些量之间的关系,得到.于是,就可求得水塔的高,问题就解决了.
考点分析:
相关试题推荐
如图,海上有一灯塔P,在它周围3海里处有暗礁.一艘客轮以9海里/时的速度由西向东航行,行至A点处测得P在它的北偏东60°的方向,继续行驶20分钟后,到达B处又测得灯塔P在它的北偏东45°方向.问客轮不改变方向继续前进有无触礁的危险?
查看答案
“航天”号轮船以20海里/时的速度向正东方向航行,当轮船到达A处时,测得N岛在北偏东60°的方向上,继续航行30分钟到达B处,发现一块告示牌(见图),测得N岛在北偏东45°的方向上,若轮船继续向正东方向航行,有无触礁危险?简述理由.
查看答案
如图,EF为磁湖中间的杭州路的一段,C为路右侧湖中鲶鱼墩中心,磁湖中学初三(2)班课外兴趣小组为测量鲶鱼墩中心与杭州路之间的距离,他们先在杭州路A处测得∠CAE=α°,再向前走a米到B处测得∠CBE=β度.求出鲶鱼墩中心与杭州路之间的距离.
查看答案
京杭运河修建过程中,某村考虑到安全性,决定将运河边一河埠头的台阶进行改造.在如图的台阶横断面中,将坡面AB的坡角由45°减至30°.已知原坡面的长为6m(BD所在地面为水平面)
(1)改造后的台阶坡面会缩短多少?
(2)改造后的台阶高度会降低多少?
(精确到0.1m,参考数据:
≈1.41,
≈1.73)
查看答案
如图,有一段斜坡BC长为10米,坡角∠CBD=12°,为方便残疾人的轮椅车通行,现准备把坡角降为5度.
(1)求坡高CD;
(2)求斜坡新起点A与原起点B的距离(精确到0.1米).
查看答案