满分5 > 初中数学试题 >

如图,在梯形ABCD中,AD∥BC,AC⊥AB,AD=CD,cosB=,BC=2...

如图,在梯形ABCD中,AD∥BC,AC⊥AB,AD=CD,cosB=manfen5.com 满分网,BC=26.
求:(1)cos∠DAC的值;
(2)线段AD的长.

manfen5.com 满分网
(1)在Rt△ABC中根据已知条件解直角三角形可以求出cos∠DAC的值; (2)因为△ADC是等腰三角形,利用等腰三角形的性质:底边上的中线也是底边的高就可以解题. 【解析】 (1)在Rt△ABC中,∠BAC=90°,cosB=. ∵BC=26, ∴AB=10. ∴AC=. ∵AD∥BC, ∴∠DAC=∠ACB. ∴cos∠DAC=cos∠ACB=. (2)过点D作DE⊥AC,垂足为E, ∵AD=CD,AC=24, ∴AE=EC=AC=12,又AD=DC, ∴在Rt△ADE中,cos∠DAE=. ∴AD=13.
复制答案
考点分析:
相关试题推荐
如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,请按要求完成下列各题:
(1)用签字笔画AD∥BC(D为格点),连接CD;
(2)线段CD的长为______
(3)请你在△ACD的三个内角中任选一个锐角,若你所选的锐角是______,则它所对应的正弦函数值是______
(4)若E为BC中点,则tan∠CAE的值是______

manfen5.com 满分网 查看答案
在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.
manfen5.com 满分网
(1)如图1,观察并猜想,在旋转过程中,线段EA1与FC有怎样的数量关系?并证明你的结论;
(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由;
(3)在(2)的情况下,求ED的长.
查看答案
已知∠ABC=90°,AB=2,BC=3,AD∥BC,P为线段BD上的动点,点Q在射线AB上,且满足manfen5.com 满分网(如图1所示).
(1)当AD=2,且点Q与点B重合时(如图2所示),求线段PC的长;
(2)在图1中,连接AP.当AD=manfen5.com 满分网,且点Q在线段AB上时,设点B、Q之间的距离为x,manfen5.com 满分网,其中S△APQ表示△APQ的面积,S△PBC表示△PBC的面积,求y关于x的函数解析式,并写出函数定义域;
(3)当AD<AB,且点Q在线段AB的延长线上时(如图3所示),求∠QPC的大小.
manfen5.com 满分网
查看答案
学校植物园沿路护栏纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加dcm,如图所示.已知每个菱形图案的边长manfen5.com 满分网cm,其一个内角为60度.
(1)若d=26,则该纹饰要231个菱形图案,求纹饰的长度L;
(2)当d=20时,若保持(1)中纹饰长度不变,则需要多少个这样的菱形图案?
manfen5.com 满分网
查看答案
在边长为6的菱形ABCD中,动点M从点A出发,沿A⇒B⇒C向终点C运动,连接DM交AC于点N.
manfen5.com 满分网
(1)如图1,当点M在AB边上时,连接BN:
①求证:△ABN≌△ADN;
②若∠ABC=60°,AM=4,∠ABN=α,求点M到AD的距离及tanα的值.
(2)如图2,若∠ABC=90°,记点M运动所经过的路程为x(6≤x≤12).试问:x为何值时,△ADN为等腰三角形.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.