满分5 > 初中数学试题 >

已知抛物线y=-x2+2x+2. (1)该抛物线的对称轴是______,顶点坐标...

manfen5.com 满分网已知抛物线y=-x2+2x+2.
(1)该抛物线的对称轴是______,顶点坐标______
(2)选取适当的数据填入下表,并在图7的直角坐标系内描点画出该抛物线的图象;
x
y
(3)若该抛物线上两点A(x1,y1),B(x2,y2)的横坐标满足x1>x2>1,试比较y1与y2的大小.
(1)代入对称轴公式和顶点公式(-,)即可;(2)尽量让x选取整数值,通过解析式可求出对应的y的值,填表即可;(3)结合图象可知这两点位于对称轴右边,图象随着x的增大而减少,因此y1<y2. 【解析】 (1)x=1;(1,3) (2) x … -1 1 2 3 … y … -1 2 3 2 -1 … (3)因为在对称轴x=1右侧,y随x的增大而减小,又x1>x2>1,所以y1<y2.
复制答案
考点分析:
相关试题推荐
对非负实数x“四舍五入”到个位的值记为<x>,
即:当n为非负整数时,如果manfen5.com 满分网则<x>=n.
如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…
试解决下列问题:
(1)填空:①<π>=______(π为圆周率);
②如果<2x-1>=3,则实数x的取值范围为______
(2)①当x≥0,m为非负整数时,求证:<x+m>=m+<x>;
②举例说明<x+y>=<x>+<y>不恒成立;
(3)求满足<x>=manfen5.com 满分网的所有非负实数x的值;
(4)设n为常数,且为正整数,函数manfen5.com 满分网的自变量x在n≤x<n+1范围内取值时,函数值y为整数的个数记为a,满足<manfen5.com 满分网>=n的所有整数k的个数记为b.求证:a=b=2n.
查看答案
已知二次函数y=ax2+bx+c.
(1)当a=1,b=-2,c=1时,请在图上的直角坐标系中画出此时二次函数的图象;
(2)用配方法求该二次函数的图象的顶点坐标.

manfen5.com 满分网 查看答案
抛物线y=-x2+(m-1)x+m与y轴交于(0,3)点.
(1)求出m的值并画出这条抛物线;
(2)求它与x轴的交点和抛物线顶点的坐标;
(3)x取什么值时,抛物线在x轴上方?
(4)x取什么值时,y的值随x值的增大而减小?

manfen5.com 满分网 查看答案
小明为了通过描点法作出函数y=x2-x+1的图象,先取自变量x的7个值满足:
x2-x1=x3-x2=…=x7-x6=d,再分别算出对应的y值,列出表:
 x x1x2 x3 x4x5 x6x7
 y 1 713 21 31  43
记m1=y2-y1,m2=y3-y2,m3=y4-y3,m4=y5-y4,…;s1=m2-m1,s2=m3-m2,s3=m4-m3,…
(1)判断s1、s2、s3之间关系,并说明理由;
(2)若将函数“y=x2-x+1”改为“y=ax2+bx+c(a≠0)”,列出表:
x1 x2 x3 x4x5x6 x7
 y y1 y2y3y4y5y6 y7
其他条件不变,判断s1、s2、s3之间关系,并说明理由;
(3)小明为了通过描点法作出函数y=ax2+bx+c(a≠0)的图象,列出表:
 x x1x2 x3 x4x5 x6x7
 y 1050  110190 290 412  550
由于小明的粗心,表中有一个y值算错了,请指出算错的y值(直接写答案).
查看答案
阅读以下材料:
对于三个数a、b、c,用M(a,b,c)表示这三个数的平均数,用min(a,b,c)表示这三个数中最小的数.例如:M{-1,2,3}=manfen5.com 满分网;min{-1,2,3}=-1;min{-1,2,a}=a(a≤-1);-1(a>-1)
解决下列问题:
(1)填空:min{sin30°,cos45°,tan30°}=______,如果min{2,2x+2,4-2x}=2,则x的取值范围为______≤x≤______
(2)①如果M{2,x+1,2x}=min{2,x+1,2x},求x.
②根据①,你发现了结论“如果M{a,b,c}=min{a,b,c},那么______(填a,b,c的大小关系)”,
证明你发现的结论.
③运用②的结论,填空:若M{2x+y+2,x+2y,2x-y}=min{2x+y+2,x+2y,2x-y},则x+y=______
(3)在同一直角坐标系中作出函数y=x+1,y=(x+1)2,y=2-x的图象(不需列表描点),通过观察图象,填空:min{x+1,(x-1)2,2-x}的最大值为______

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.