满分5 > 初中数学试题 >

将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为( ) A.y...

将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为( )
A.y=(x+1)2+4
B.y=(x-1)2+4
C.y=(x+1)2+2
D.y=(x-1)2+2
本题是将一般式化为顶点式,由于二次项系数是1,只需加上一次项系数的一半的平方来凑成完全平方式即可. 【解析】 y=x2-2x+3=x2-2x+1-1+3=(x-1)2+2. 故选D.
复制答案
考点分析:
相关试题推荐
抛物线y=manfen5.com 满分网(x+2)(x-6)的对称轴是( )
A.x=-2
B.x=6
C.x=2
D.x=4
查看答案
抛掷红、蓝两枚六面编号分别为1~6(整数)的质地均匀的正方体骰子,将红色和蓝色骰子正面朝上的编号分别作为二次函数y=x2+mx+n的一次项系数m和常数项n的值.
(1)问这样可以得到多少个不同形式的二次函数?(只需写出结果)
(2)请求出抛掷红、蓝骰子各一次,得到的二次函数图象顶点恰好在x轴上的概率是多少并说明理由.
查看答案
有不透明的甲、乙两个口袋,甲口袋装有3张完全相同的卡片,标的数分别是-1,2,-3,乙口袋装有4张完全相同的卡片,标的数分别是1,-2,-3,4.现随机从甲袋中抽取一张将数记为x,从乙袋中抽取一张将数记为y.
(1)请你用树状图或列表法求出从两个口袋中所抽取卡片的数组成的对应点(x,y)落在第二象限的概率;
(2)直接写出其中所有点(x,y)落在函数y=x2图象上的概率.
查看答案
如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°
操作:将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q.
探究一:在旋转过程中,
(1)如图2,当manfen5.com 满分网时,EP与EQ满足怎样的数量关系?并给出证明;
(2)如图3,当manfen5.com 满分网时,EP与EQ满足怎样的数量关系?并说明理由;
(3)根据你对(1)、(2)的探究结果,试写出当manfen5.com 满分网时,EP与EQ满足的数量关系式为______,其中m的取值范围是______
查看答案
如图在Rt△ABC中,∠A=90°,AB=10,AC=5,若动点P从点B出发,沿线段BA运动到A点为止,运动为每秒2个单位长度.过点P作PM∥BC,交AC于点M,设动点P运动时间为x秒,AM的长为y.
(1)求出y关于x的函数关系式,并写出自变量x的取值范围;
(2)当x为何值时,△BPM的面积S有最大值,最大值是多少?

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.