二次函数y=ax
2+bx+c(a≠0)的图象经过点A(3,0),B(2,-3),并且以x=1为对称轴.
(1)求此函数的解析式;
(2)作出二次函数的大致图象;
(3)在对称轴x=1上是否存在一点P,使△PAB中PA=PB?若存在,求出P点的坐标;若不存在,说明理由.
考点分析:
相关试题推荐
已知一个二次函数的图象经过点(0,0),(1,-3),(2,-8).
(1)求这个二次函数的解析式;
(2)写出它的对称轴和顶点坐标.
查看答案
已知二次函数y=ax
2+bx+c的部分对应值如下表,求这个函数的解析式,并写出其图象的顶点坐标和对称轴.
查看答案
已知二次函数图象经过(2,-3),对称轴x=1,抛物线与x轴两交点距离为4,求这个二次函数的解析式.
查看答案
已知抛物线y=ax
2+bx+c经过A,B,C三点,当x≥0时,其图象如图所示.
(1)求抛物线的解析式,写出抛物线的顶点坐标;
(2)画出抛物线y=ax
2+bx+c当x<0时的图象;
(3)利用抛物线y=ax
2+bx+c,写出x为何值时,y>0.
查看答案
已知二次函数y=ax
2+bx+c(a≠0)的图象与y轴相交于点(0,-3),并经过点(-2,5),它的对称轴是x=1,如图为函数图象的一部分.
(1)求函数解析式,写出函数图象的顶点坐标;
(2)在原题图上,画出函数图象的其余部分;
(3)如果点P(n,-2n)在上述抛物线上,求n的值.
查看答案