满分5 > 初中数学试题 >

如图,矩形ABCD的长,宽分别为和1,且OB=1,点E(,2),连接AE,ED....

manfen5.com 满分网如图,矩形ABCD的长,宽分别为manfen5.com 满分网和1,且OB=1,点E(manfen5.com 满分网,2),连接AE,ED.
(1)求经过A,E,D三点的抛物线的表达式;
(2)若以原点为位似中心,将五边形AEDCB放大,使放大后的五边形的边长是原五边形对应边长的3倍,请在下图网格中画出放大后的五边形A′E′D′C′B′;
(3)经过A′,E′,D′三点的抛物线能否由(1)中的抛物线平移得到?请说明理由.
(1)A,E,D三点坐标已知,可用一般式来求解; (2)延长OA到A′,使OA′=3OA,同理可得到其余各点; (3)根据二次项系数是否相同即可判断两个函数是否由平移得到. 【解析】 (1)设经过A,E,D三点的抛物线的表达式为y=ax2+bx+c ∵A(1,),E(,2),D(2,)(1分) ∴,解之,得 ∴过A,E,D三点的抛物线的表达式为y=-2x2+6x-.(4分) (2)如图.(7分) (3)不能,理由如下:(8分) 设经过A′,E′,D′三点的抛物线的表达式为y=a′x2+b′x+c′ ∵A′(3,),E′(,6),D′(6,) ∴, 解之,得 a=-2,, ∴a≠a′ ∴经过A′,E′,D′三点的抛物线不能由(1)中的抛物线平移得到.(8分)
复制答案
考点分析:
相关试题推荐
如图,已知A(-4,0),B(0,4),现以A点为位似中心,相似比为9:4,将OB向右侧放大,B点的对应点为C.
(1)求C点坐标及直线BC的解析式;
(2)一抛物线经过B、C两点,且顶点落在x轴正半轴上,求该抛物线的解析式并画出函数图象;
(3)现将直线BC绕B点旋转与抛物线相交于另一点P,请找出抛物线上所有满足到直线AB距离为manfen5.com 满分网的点P.

manfen5.com 满分网 查看答案
如图,直线y=2x+2与x轴、y轴分别相交于A、B两点,将△AOB绕点O顺时针旋转90°得到△A1OB1
(1)在图中画出△A1OB1
(2)求经过A,A1,B1三点的抛物线的解析式.

manfen5.com 满分网 查看答案
已知抛物线y=ax2+bx+c过点A(0,2)、B(manfen5.com 满分网manfen5.com 满分网),且点B关于原点的对称点C也在该抛物线上.
(1)求a、b、c的值;
(2)①这条抛物线上纵坐标为manfen5.com 满分网的点共有______个;
②请写出:函数值y随着x的增大而增大的x的一个范围______
查看答案
已知抛物线y=ax2+bx+c经过(-1,0),(0,-3),(2,-3)三点.
(1)求这条抛物线的解析式;
(2)写出抛物线的开口方向、对称轴和顶点坐标.
查看答案
二次函数y=ax2+bx+c(a≠0)的图象经过点A(3,0),B(2,-3),并且以x=1为对称轴.
(1)求此函数的解析式;
(2)作出二次函数的大致图象;
(3)在对称轴x=1上是否存在一点P,使△PAB中PA=PB?若存在,求出P点的坐标;若不存在,说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.