满分5 > 初中数学试题 >

已知二次函数y=x2+2x+m的图象C1与x轴有且只有一个公共点. (1)求C1...

已知二次函数y=x2+2x+m的图象C1与x轴有且只有一个公共点.
(1)求C1的顶点坐标;
(2)将C1向下平移若干个单位后,得抛物线C2,如果C2与x轴的一个交点为A(-3,0),求C2的函数关系式,并求C2与x轴的另一个交点坐标;
(3)若P(n,y1),Q(2,y2)是C1上的两点,且y1>y2,求实数n的取值范围.
(1)由于二次函数y=x2+2x+m的图象C1与x轴有且只有一个公共点,那么顶点的纵坐标为0,由此可以确定m. (2)首先设所求抛物线解析式为y=(x+1)2+k,然后把A(-3,0)代入即可求出k,也就求出了抛物线的解析式; (3)由于图象C1的对称轴为直线x=-1,所以知道当x≥-1时,y随x的增大而增大,然后讨论n≥-1和n≤-1两种情况,利用前面的结论即可得到实数n的取值范围. (1)y=x2+2x+m=(x+1)2+m-1,对称轴为直线x=-1, ∵与x轴有且只有一个公共点, ∴顶点的纵坐标为0, ∴C1的顶点坐标为(-1,0); (2)设C2的函数关系式为y=(x+1)2+k, 把A(-3,0)代入上式得(-3+1)2+k=0,得k=-4, ∴C2的函数关系式为y=(x+1)2-4. ∵抛物线的对称轴为直线x=-1,与x轴的一个交点为A(-3,0), 由对称性可知,它与x轴的另一个交点坐标为(1,0); (3)当x≥-1时,y随x的增大而增大, 当n≥-1时, ∵y1>y2, ∴n>2. 当n<-1时,P(n,y1)的对称点坐标为(-2-n,y1),且-2-n>-1, ∵y1>y2, ∴-2-n>2, ∴n<-4. 综上所述:n>2或n<-4.
复制答案
考点分析:
相关试题推荐
已知二次函数y=ax2+bx+c.
(1)若a=2,c=-3,且二次函数的图象经过点(-1,-2),求b的值;
(2)若a=2,b+c=-2,b>c,且二次函数的图象经过点(p,-2),求证:b≥0;
(3)若a+b+c=0,a>b>c,且二次函数的图象经过点(q,-a),试问当自变量x=q+4时,二次函数y=ax2+bx+c所对应的函数值y是否大于0?请证明你的结论.
查看答案
已知二次函数y=x2+2x+c的图象经过点(1,-5).
(1)求c的值;
(2)求函数图象与x轴的交点坐标.
查看答案
已知二次函数的图象以A(-1,4)为顶点,且过点B(2,-5)
①求该函数的关系式;
②求该函数图象与坐标轴的交点坐标;
③将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.
查看答案
已知二次函数y=ax2+bx-3的图象经过点A(2,-3),B(-1,0).
(1)求二次函数的解析式;
(2)填空:要使该二次函数的图象与x轴只有一个交点,应把图象沿y轴向上平移______个单位.
查看答案
下表给出了代数式x2+bx+c与x的一些对应值:
     x … 0 1 2
 x2+bx+c … 3 -1  3
(1)请在表内的空格中填入适当的数;
(2)设y=x2+bx+c,则当x取何值时,y>0;
(3)请说明经过怎样平移函数y=x2+bx+c的图象得到函数y=x2的图象?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.