满分5 > 初中数学试题 >

已知:关于x的一元二次方程mx2-(3m+2)x+2m+2=0(m>0). (1...

已知:关于x的一元二次方程mx2-(3m+2)x+2m+2=0(m>0).
(1)求证:方程有两个不相等的实数根;
(2)设方程的两个实数根分别为x1,x2(其中x1<x2).若y是关于m的函数,且y=x2-2x1,求这个函数的解析式;
(3)在(2)的条件下,结合函数的图象回答:当自变量m的取值范围满足什么条件时,y≤2m.

manfen5.com 满分网
(1)本题的突破口在于利用△.化简得出(m+2)2>0得出△>0. (2)由求根公式得出x的解,由y=x2-2x1求出关于m的解析式. (1)证明:∵mx2-(3m+2)x+2m+2=0是关于x的一元二次方程, ∴△=[-(3m+2)]2-4m(2m+2)=m2+4m+4=(m+2)2. ∵当m>0时,(m+2)2>0,即△>0. ∴方程有两个不相等的实数根.(2分) (2)【解析】 由求根公式,得. ∴或x=1.(3分) ∵m>0, ∴. ∵x1<x2, ∴x1=1,.(4分) ∴y=x2-2x1=-2×1=. 即y=(m>0)为所求.(5分) (3)【解析】 在同一平面直角坐标系中分别画出y=(m>0)与y=2m(m>0)的图象.(6分) 由图象可得,当m≥1时,y≤2m.(7分)
复制答案
考点分析:
相关试题推荐
已知两个关于x的二次函数y1与y2,y1=a(x-k)2+2(k>0),y1+y2=x2+6x+12;当x=k时,y2=17;且二次函数y2的图象的对称轴是直线x=-1.
(1)求k的值;
(2)求函数y1,y2的表达式;
(3)在同一直角坐标系内,问函数y1的图象与y2的图象是否有交点?请说明理由.
查看答案
已知抛物线y=3ax2+2bx+c,
(Ⅰ)若a=b=1,c=-1,求该抛物线与x轴公共点的坐标;
(Ⅱ)若a=b=1,且当-1<x<1时,抛物线与x轴有公共点,求c的取值范围;
(Ⅲ)若a+b+c=0,且x1=0时,对应的y1>0;x2=1时,对应的y2>0,试判断当0<x<1时,抛物线与x轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.
查看答案
已知关于x的函数y=ax2+x+1(a为常数)
(1)若函数的图象与x轴恰有一个交点,求a的值;
(2)若函数的图象是抛物线,且顶点始终在x轴上方,求a的取值范围.
查看答案
已知关于x的二次函数y=x2-(2m-1)x+m2+3m+4.
(1)探究m满足什么条件时,二次函数y的图象与x轴的交点的个数;
(2)设二次函数y的图象与x轴的交点为A(x1,0),B(x2,0),且x12+x22=5,与y轴的交点为C,它的顶点为M,求直线CM的解析式.
查看答案
如图,已知抛物线y=-manfen5.com 满分网x2+manfen5.com 满分网x+manfen5.com 满分网与x轴的两个交点为A、B,与y轴交于点C.
(1)求A,B,C三点的坐标;
(2)求证:△ABC是直角三角形;
(3)若坐标平面内的点M,使得以点M和三点A、B、C为顶点的四边形是平行四边形,求点M的坐标.(直接写出点的坐标,不必写求解过程)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.