满分5 > 初中数学试题 >

二次函数y=ax2+bx+c中,自变量x与函数y的对应值如下表: x -1 - ...

二次函数y=ax2+bx+c中,自变量x与函数y的对应值如下表:
x-1-manfen5.com 满分网manfen5.com 满分网1manfen5.com 满分网2manfen5.com 满分网3
y-2-manfen5.com 满分网1manfen5.com 满分网2manfen5.com 满分网1-manfen5.com 满分网-2
(1)判断二次函数图象的开口方向,并写出它的顶点坐标.
(2)一元二次方程ax2+bx+c=0(a≠0,a,b,c是常数)的两个根x1,x2的取值范围是下列选项中的哪一个______
manfen5.com 满分网
manfen5.com 满分网
manfen5.com 满分网
manfen5.com 满分网
(1)二次函数的图象是抛物线,对称性是它的显著特点函数值y在x=1,y=2的左右两边对称摆布,由此可知点(1,2)是抛物线的顶点,此时,函数值最大,故开口向下; (2)在函数值由负值到正值过度过程中,就会有一个时刻y=0,方程的根就在这个过度范围内. 【解析】 (1)开口向下,顶点坐标(1,2); (2)∵y的值在1和-之间, ∴两个根x1,x2的取值范围是. 故选③.
复制答案
考点分析:
相关试题推荐
已知关于x的一元二次方程x2+bx+c=x有两个实数根x1,x2,且满足x1>0,x2-x1>1.
(1)试证明c>0;
(2)证明b2>2(b+2c);
(3)对于二次函数y=x2+bx+c,若自变量取值为x,其对应的函数值为y,则当0<x<x1时,试比较y与x1的大小.
查看答案
已知:关于x的一元二次方程mx2-(3m+2)x+2m+2=0(m>0).
(1)求证:方程有两个不相等的实数根;
(2)设方程的两个实数根分别为x1,x2(其中x1<x2).若y是关于m的函数,且y=x2-2x1,求这个函数的解析式;
(3)在(2)的条件下,结合函数的图象回答:当自变量m的取值范围满足什么条件时,y≤2m.

manfen5.com 满分网 查看答案
已知两个关于x的二次函数y1与y2,y1=a(x-k)2+2(k>0),y1+y2=x2+6x+12;当x=k时,y2=17;且二次函数y2的图象的对称轴是直线x=-1.
(1)求k的值;
(2)求函数y1,y2的表达式;
(3)在同一直角坐标系内,问函数y1的图象与y2的图象是否有交点?请说明理由.
查看答案
已知抛物线y=3ax2+2bx+c,
(Ⅰ)若a=b=1,c=-1,求该抛物线与x轴公共点的坐标;
(Ⅱ)若a=b=1,且当-1<x<1时,抛物线与x轴有公共点,求c的取值范围;
(Ⅲ)若a+b+c=0,且x1=0时,对应的y1>0;x2=1时,对应的y2>0,试判断当0<x<1时,抛物线与x轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.
查看答案
已知关于x的函数y=ax2+x+1(a为常数)
(1)若函数的图象与x轴恰有一个交点,求a的值;
(2)若函数的图象是抛物线,且顶点始终在x轴上方,求a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.