满分5 > 初中数学试题 >

二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题: (...

二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:
(1)写出方程ax2+bx+c=0的两个根;
(2)写出不等式ax2+bx+c>0的解集;
(3)写出y随x的增大而减小的自变量x的取值范围;
(4)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.

manfen5.com 满分网
(1)看二次函数与x轴交点的横坐标即可; (2)看x轴上方的二次函数的图象相对应的x的范围即可; (3)在对称轴的右侧即为y随x的增大而减小; (4)得到相对应的函数看是怎么平移得到的即可. 【解析】 (1)已知抛物线y=ax2+bx+c(a≠0),可得x1=1,x2=3;(2分) (2)依题意因为ax2+bx+c>0,得出x的取值范围为1<x<3;(2分) (3)如图可知,当y随x的增大而减小,自变量x的取值范围为x>2;(2分) (4)由顶点(2,2)设方程为a(x-2)2+2=0, ∵二次函数与x轴的2个交点为(1,0),(3,0), 代入a(x-2)2+2=0得:a(1-2)2+2=0, ∴a=-2, ∴抛物线方程为y=-2(x-2)2+2, y=-2(x-2)2+2-k实际上是原抛物线下移或上移|k|个单位.由图象知,当2-k>0时,抛物线与x轴有两个交点. 故k<2.(4分)
复制答案
考点分析:
相关试题推荐
已知函数y=x2+2x+c的图象与x轴的两交点的横坐标分别是x1,x2,且x12+x22=c2-2c,求c及x1,x2的值.

manfen5.com 满分网 查看答案
二次函数y=ax2+bx+c中,自变量x与函数y的对应值如下表:
x-1-manfen5.com 满分网manfen5.com 满分网1manfen5.com 满分网2manfen5.com 满分网3
y-2-manfen5.com 满分网1manfen5.com 满分网2manfen5.com 满分网1-manfen5.com 满分网-2
(1)判断二次函数图象的开口方向,并写出它的顶点坐标.
(2)一元二次方程ax2+bx+c=0(a≠0,a,b,c是常数)的两个根x1,x2的取值范围是下列选项中的哪一个______
manfen5.com 满分网
manfen5.com 满分网
manfen5.com 满分网
manfen5.com 满分网
查看答案
已知关于x的一元二次方程x2+bx+c=x有两个实数根x1,x2,且满足x1>0,x2-x1>1.
(1)试证明c>0;
(2)证明b2>2(b+2c);
(3)对于二次函数y=x2+bx+c,若自变量取值为x,其对应的函数值为y,则当0<x<x1时,试比较y与x1的大小.
查看答案
已知:关于x的一元二次方程mx2-(3m+2)x+2m+2=0(m>0).
(1)求证:方程有两个不相等的实数根;
(2)设方程的两个实数根分别为x1,x2(其中x1<x2).若y是关于m的函数,且y=x2-2x1,求这个函数的解析式;
(3)在(2)的条件下,结合函数的图象回答:当自变量m的取值范围满足什么条件时,y≤2m.

manfen5.com 满分网 查看答案
已知两个关于x的二次函数y1与y2,y1=a(x-k)2+2(k>0),y1+y2=x2+6x+12;当x=k时,y2=17;且二次函数y2的图象的对称轴是直线x=-1.
(1)求k的值;
(2)求函数y1,y2的表达式;
(3)在同一直角坐标系内,问函数y1的图象与y2的图象是否有交点?请说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.