满分5 > 初中数学试题 >

阅读材料,解答问题. 利用图象法解一元二次不等式:x2-2x-3>0. 【解析】...

阅读材料,解答问题.
利用图象法解一元二次不等式:x2-2x-3>0.
【解析】
设y=x2-2x-3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.
又∵当y=0时,x2-2x-3=0,解得x1=-1,x2=3.
∴由此得抛物线y=x2-2x-3的大致图象如图所示.
观察函数图象可知:当x<-1或x>3时,y>0.
∴x2-2x-3>0的解集是:x<-1或x>3.
(1)观察图象,直接写出一元二次不等式:x2-2x-3<0的解集是______
(2)仿照上例,用图象法解一元二次不等式:x2-1>0.(大致图象画在答题卡上)

manfen5.com 满分网
(1)由x2-2x-3=0得x1=-1,x2=3,抛物线y=x2-2x-3开口向上,y<0时,图象在x轴的下方,此时-1<x<3; (2)仿照(1)的方法,解出图象与x轴的交点坐标,根据图象的开口方向及函数值的符号,确定x的范围. 【解析】 (1)-1<x<3; (2)设y=x2-1,则y是x的二次函数, ∵a=1>0, ∴抛物线开口向上. 又∵当y=0时,x2-1=0, 解得x1=-1,x2=1. ∴由此得抛物线y=x2-1的大致图象如图所示. 观察函数图象可知:当x<-1或x>1时,y>0. ∴x2-1>0的解集是:x<-1或x>1.
复制答案
考点分析:
相关试题推荐
已知二次函数y=x2+px+q(p,q为常数,△=p2-4q>0)的图象与x轴相交于A(x1,0),B(x2,0)两点,且A,B两点间的距离为d,例如,通过研究其中一个函数y=x2-5x+6及图象(如图),可得出表中第2行的相关数据.
(1)在表内的空格中填上正确的数;
(2)根据上述表内d与△的值,猜想它们之间有什么关系?再举一个符合条件的二次函数,验证你的猜想;
(3)对于函数y=x2+px+q(p,q为常数,△=p2-4q>0)证明你的猜想.聪明的小伙伴:你能再给出一种不同于(3)的正确证明吗?我们将对你的出色表现另外奖励3分.
y=x2+px+q x1x2 
y=x2-5x+6 -5 6 1 1
y=x2-manfen5.com 满分网-manfen5.com 满分网   manfen5.com 满分网  manfen5.com 满分网 
y=x2+x-2  -2 -2  3


manfen5.com 满分网 查看答案
利用图象解一元二次方程x2-2x-1=0时,我们采用的一种方法是:在直角坐标系中画出抛物线y=x2和直线y=2x+1,两图象交点的横坐标就是该方程的解.
(1)请再给出一种利用图象求方程x2-2x-1=0的解的方法;
(2)已知函数y=x3的图象(如图):求方程x3-x-2=0的解.(结果保留2个有效数字)
manfen5.com 满分网
查看答案
小明在复习数学知识时,针对“求一元二次方程的解”,整理了以下的几种方法,请你按有关内容补充完整:
复习日记卡片
内容:一元二次方程解法归纳                                时间:2007年6月×日
举例:求一元二次方程x2-x-1=0的两个解
方法一:选择合适的一种方法(公式法、配方法、分解因式法)求解
解方程:x2-x-1=0.
【解析】

方法二:利用二次函数图象与坐标轴的交点求解如图所示,把方程x2-x-1=0的解看成是二次函数y=______的图象与x轴交点的横坐标,即x1,x2就是方程的解.
manfen5.com 满分网

方法三:利用两个函数图象的交点求解
(1)把方程x2-x-1=0的解看成是一个二次函数y=______的图象与一个一次函数y=______图象交点的横坐标;
(2)画出这两个函数的图象,用x1,x2在x轴上标出方程的解.

manfen5.com 满分网

查看答案
利用图象解一元二次方程x2+x-3=0时,我们采用的一种方法是:在平面直角坐标系中画出抛物线y=x2和直线y=-x+3,两图象交点的横坐标就是该方程的解.
(1)填空:利用图象解一元二次方程x2+x-3=0,也可以这样求【解析】
在平面直角坐标系中画出抛物线y=______和直线y=-x,其交点的横坐标就是该方程的解.
(2)已知函数y=-manfen5.com 满分网的图象(如图所示),利用图象求方程manfen5.com 满分网-x+3=0的近似解.(结果保留两个有效数字)

manfen5.com 满分网 查看答案
(1)请在坐标系中画出二次函数y=x2-2x的大致图象;
(2)根据方程的根与函数图象的关系,将方程x2-2x=1的根在图上近似的表示出来(描点);
(3)观察图象,直接写出方程x2-2x=1的根.(精确到0.1)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.