天羽服装厂生产M、N型两种服装,受资金及规模限制,每天最多只能用A种面料68米和B种面料62米生产M、N型两种服装共80套.已知M、N型服装每套所需面料和成本如下表,设每天生产M型服装x套.
| A | B | 成本 |
M型 | 1.1m | 0.4m | 100元 |
N型 | 0.6m | 0.9m | 80元 |
(1)若要每天成本不高于7200元,则该厂每天生产M型服装最多多少套,最少多少套?
(2)经市场调查,生产的M、N型服装有两种销售方案(假设每天生产的服装都能全部售出).
方案Ⅰ:两种型号服装都在本市销售,M型180元/件、N型120元/件;
方案Ⅱ:N型服装在本市销售,120元/件,M型服装批发给H市服装商,其每件的批发价y(元)与批量x(件)之间的关系如图所示.
如果你是厂长,应采用哪种销售方案可使每天获利最大,最大利润是多少?并确定相应的生产方案.
考点分析:
相关试题推荐
蔬菜基地种植某种蔬菜,由市场行情分析知,1月份至6月份这种蔬菜的上市时间x(月份)与市场售价p(元/千克)的关系如下表:
上市时间x(月份) | 1 | 2 | 3 | 4 | 5 | 6 |
市场销售p(元/千克) | 10.5 | 9 | 7.5 | 6 | 4.5 | 3 |
这种蔬菜每千克的种植成本y(元/千克)与上市时间x(月份)满足一个函数关系,这个函数的图象是抛物线的一段(如图).
(1)写出上表中表示的市场售价p(元/千克)关于上市时间x(月份)的函数关系式;
(2)若图中抛物线过A,B,C点,写出抛物线对应的函数关系式;
(3)由以上信息分析,哪个月上市出售这种蔬菜每千克的收益最大?最大值为多少?(收益=市场售价-种植成本)
查看答案
某种爆竹点燃后,其上升高度h(米)和时间t(秒)符合关系式h=v
t+
gt
2(0<t≤2),其中重力加速度g以10米/秒
2计算.这种爆竹点燃后以v
=20米/秒的初速度上升.(上升过程中,重力加速度g为-10米/秒
2;下降过程中,重力加速度g为10米/秒
2)
(1)这种爆竹在地面上点燃后,经过多少时间离地15米?
(2)在爆竹点燃后的1.5秒至1.8秒这段时间内,判断爆竹是上升,或是下降,并说明理由.
查看答案
我市某外资企业生产的一批产品上市后30天内全部售完,该企业对这批产品上市后每天的销售情况进行了跟踪调查.其中,国内市场的日销售量y
1(万件)与时间t(t为整数,单位:天)的部分对应值如下表所示.而国外市场的日销售量y
2(万件)与时间t(t为整数,单位:天)的关系如图所示.
(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y
1与t的变化规律,写出y
1与t的函数关系式及自变量t的取值范围;
(2)分别探求该产品在国外市场上市20天前(不含第20天)与20天后(含第20天)的日销售量y
2与时间t所符合的函数关系式,并写出相应自变量t的取值范围;
(3)设国内、外市场的日销售总量为y万件,写出y与时间t的函数关系式,并判断上市第几天国内、外市场的日销售总量y最大,并求出此时的最大值.
查看答案
某电脑公司开发出一种软件,从研发到年初上市后,经历了从亏损到盈利的过程,如图所示的二次函数图象(部分)刻画了该公司年初以来累计利润y(万元)与销售时间x(月)之间的函数关系(即x个月累计利润总和y与x之间的关系),根据图象提供的信息解答下列问题:
(1)该种软件上市第几个月后开始盈利;
(2)求累计利润总和y(万元)与时间x(月)之间的函数关系式;
(3)截止到几月末公司累计利润达到30万元;
(4)求出该函数图象与y轴的交点坐标,并说明该点的实际意义.
查看答案
某隧道横断面由抛物线与矩形的三边组成,尺寸如图所示.
(1)以隧道横断面抛物线的顶点为原点,以抛物线的对称轴为y轴,建立直角坐标系,求该抛物线对应的函数关系式;
(2)某卡车空车时能通过此隧道,现装载一集装箱箱宽3m,车与箱共高4.5m,此车能否通过隧道?并说明理由.
查看答案