某校的围墙上端由一段段相同的凹曲拱形栅栏组成,如图所示,其拱形图形为抛物线的一部分,栅栏的跨径AB间,按相同的间距0.2米用5根立柱加固,拱高OC为0.6米.
(1)以O为原点,OC所在的直线为y轴建立平面直角坐标系,请根据以上的数据,抛物线y=ax
2中a=______;
(2)计算一段栅栏所需立柱的总长度为______米.(精确到0.1米)
考点分析:
相关试题推荐
用总长为32m的篱笆墙围成一个扇形的花园.
(1)试写出扇形花园的面积y(m
2)与半径x(m)之间的函数关系式和自变量x的取值范围;
(2)用描点法作出函数的图象;
(3)当扇形花园半径为多少时,花园面积最大?最大面积是多少?此时这个扇形的圆心角是多大(精确到0.1度)?
(4)请回答:如果同样用32m的篱笆围成一个面积最大的矩形花园,这个花园的面积是多少?对比上面的结论,你有什么发现?
查看答案
如图,一张边长为16cm的正方形硬纸板,把它的四个角都剪去一个边长为xcm的小正方形,然后把它折成一个无盖的长方体,设长方体的容积为Vcm
3,请回答下列问题:
(1)若用含有X的代数式表示V,则V=______;
(2)完成下表:
(3)观察上表,容积V的值是否随x值得增大而增大?当x取什么值时,容积V的值最大?
查看答案
东海体育用品商场为了推销某一运动服,先做了市场调查,得到数据如下表:
卖出价格x(元/件) | 50 | 51 | 52 | 53 | … |
销售量p(件) | 500 | 490 | 480 | 470 | … |
(1)以x作为点的横坐标,p作为纵坐标,把表中的数据,在图中的直角坐标系中描出相应的点,观察连接各点所得的图形,判断p与x的函数关系式;
(2)如果这种运动服的买入价为每件40元,试求销售利润y(元)与卖出价格x(元/件)的函数关系式(销售利润=销售收入-买入支出);
(3)在(2)的条件下,当卖出价为多少时,能获得最大利润?
查看答案
有一个抛物线形的拱形隧道,隧道的最大高度为6m,跨度为8m,把它放在如图所示的平面直角坐标系中.
(1)求这条抛物线所对应的函数关系式;
(2)若要在隧道壁上点P(如图)安装一盏照明灯,灯离地面高4.5m.求灯与点B的距离.
查看答案
某公司2005年1-3月的月利润y(万元)与月份x之间的关系如图所示.图中的折线可近似看作是抛物线的一部分.
(1)根据图象提供的信息,求出过A、B、C三点的二次函数关系式;
(2)公司开展技术革新活动,定下目标:今年6月份的利润仍以图中抛物线的上升趋势上升.6月份公司预计将达到多少万元?
(3)如果公司1月份的利润率为13%,以后逐月增加1个百分点.已知6月上旬平均每日实际销售收入为3.6万元,照此推算6月份公司的利润是否会超过(2)中所确定的目标?
(成本总价=利润利润率,销售收入=成本总价+利润)
查看答案