如图,在正方形ABCD中,AB=2,E是AD边上一点(点E与点A,D不重合).BE的垂直平分线交AB于M,交DC于N.
(1)设AE=x,四边形ADNM的面积为S,写出S关于x的函数关系式;
(2)当AE为何值时,四边形ADNM的面积最大?最大值是多少?
考点分析:
相关试题推荐
路在山腹行是沪蓉西高速公路的显著特点之一,全线共有隧道37座,共计长达742421.2米.下图是正在修建的庙垭隧道的截面,截面是由一抛物线和一矩形构成,其行车道CD总宽度为8米,隧道为单行线2车道.
(1)建立恰当的平面直角坐标系,并求出隧道拱抛物线的解析式;
(2)在隧道拱的两侧距地面3米高处各安装一盏路灯,在(1)的平面直角坐标系中用坐标表示其中一盏路灯的位置;
(3)为了保证行车安全,要求行驶车辆顶部(设为平顶)与隧道拱在竖直方向上高度之差至少有0.5米.现有一辆汽车,装载货物后,其宽度为4米,车载货物的顶部与路面的距离为2.5米,该车能否通过这个隧道?请说明理由.
查看答案
某食品零售店为仪器厂代销一种面包,未售出的面包可退回厂家,以统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个.在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个.考虑了所有因素后该零售店每个面包的成本是5角.
设这种面包的单价为x(角),零售店每天销售这种面包所获得的利润为y(角).
(1)用含x的代数式分别表示出每个面包的利润与卖出的面包个数;
(2)求y与x之间的函数关系式;
(3)当面包单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少?
查看答案
某机械租赁公司有同一型号的机械设备40套.经过一段时间的经营发现:当每套机械设备的月租金为270元时,恰好全部租出.在此基础上,当每套设备的月租金每提高10元时,这种设备就少租出一套,且没租出的一套设备每月需支出费用(维护费、管理费等)20元.设每套设备的月租金为x(元),租赁公司出租该型号设备的月收益(收益=租金收入-支出费用)为y(元).
(1)用含x的代数式表示未出租的设备数(套)以及所有未出租设备(套)的支出费;
(2)求y与x之间的二次函数关系式;
(3)当月租金分别为300元和350元时,租赁公司的月收益分别是多少元?此时应该出租多少套机械设备?请你简要说明理由;
(4)请把(2)中所求出的二次函数配方成y=a(x+
)
2+
的形式,并据此说明:当x为何值时,租赁公司出租该型号设备的月收益最大?最大月收益是多少?
查看答案
市政府为改善居民的居住环境,修建了环境幽雅的环城公园,为了给公园内的草评定期喷水,安装了一些自动旋转喷水器,如图所示,设喷水管AB高出地面1.5m,在B处有一个自动旋转的喷水头,-瞬间喷出的水流呈抛物线状.喷头B与水流最高点C的连线与地平面成45°的角,水流的最高点C离地平面距离比喷水头B离地平面距离高出2m,水流的落地点为D.在建立如图所示的直角坐标系中:
(1)求抛物线的函数解析式;
(2)求水流的落地点D到A点的距离是多少m?
查看答案
据统计每年由于汽车超速行驶而造成的交通事故是造成人员死亡的主要原因之一.行驶中的汽车,在刹车后由于惯性的原因,还要继续向前滑行一段距离才能停住,这段距离称为“刹车距离”.为了测定某种型号汽车的刹车性能(车速不超过140千米/时),对这种汽车的刹车距离进行测试,测得的数据如下表:
刹车时车速(千米/时) | | 5 | 10 | 15 | 20 | 25 | 30 |
刹车距离(米) | | 0.1 | 0.3 | 0.6 | 1 | 1.5 | 2.1 |
(1)在如图所示的直角坐标系中以车速为x轴,以刹车距离为y轴描出这些数据所表示的点,并用光滑的曲线连接这些点,得到某函数的大致图象.
(2)观察图象估计函数的类型,并确定一个满足这些数据的函数解析式.
(3)一辆该型号的汽车在国道上发生了交通事故,现场测得刹车距离为46.5米,请推测刹车时速度是多少?请问在事故发生时,汽车是否超速行驶?
查看答案