满分5 > 初中数学试题 >

已知直角坐标系中有一点A(-4,3),点B在x轴上,△AOB是等腰三角形. (1...

已知直角坐标系中有一点A(-4,3),点B在x轴上,△AOB是等腰三角形.
(1)求满足条件的所有点B的坐标;
(2)求过O,A,B三点且开口向下的抛物线的函数表达式(只需求出满足条件的一条即可);
(3)在(2)中求出的抛物线上存在点P,使得以O,A,B,P四点为顶点的四边形是梯形,求满足条件的所有点P的坐标及相应梯形的面积.
(1)根据点A的坐标,易求得OA=5,若△AOB是等腰三角形,应分三种情况考虑: ①OA=OB=5,由于点B的位置不确定,因此要分B在x轴正、负半轴两种情况求解,已知了OB的长,即可得到点B的坐标; ②OA=AB=5,此时点B只能在x轴负半轴上,那么点B的横坐标应为点A横坐标的2倍,可据此求得点B的坐标; ③AB=OB=5,此时点B只能在x轴负半轴上,可在x轴上截取AD=OA,通过构建相似三角形:△OBA∽△OAD,通过所得比例线段来求出OB的长,从而得到点B的坐标. (2)任选一个(1)题所得的B点坐标,利用待定系数法求解即可. (3)解此题时,虽然不同的抛物线有不同的解,但解法一致;分两种情况: ①OA∥BP时,可分别过A、P作x轴的垂线,设垂足为C、E,易证得△AOC∽△PBE,根据所得比例线段,即可求得点P的坐标.而梯形ABPO的面积可化为△ABO、△PBO的面积和来求出. ②OP∥AB时,方法同上,过P作PF⊥x轴于F,然后通过相似三角形:△ABC∽△POF,来求出P点坐标,梯形面积求法同上.(当OA=AB时,两种情况的点P正好关于抛物线对称轴对称,可据此直接求出P点坐标,避免重复计算.) 【解析】 作AC⊥x轴,由已知得OC=4,AC=3,OA==5. (1)当OA=OB=5时, 如果点B在x轴的负半轴上,如图(1),点B的坐标为(-5,0); 如果点B在x轴的正半轴上,如图(2),点B的坐标为(5,0); 当OA=AB时,点B在x轴的负半轴上,如图(3),BC=OC,则OB=8,点B的坐标为(-8,0); 当AB=OB时,点B在x轴的负半轴上,如图(4),在x轴上取点D,使AD=OA,可知OD=8. 由∠AOB=∠OAB=∠ODA,可知△AOB∽△ODA, 则, 解得OB=, 点B的坐标为(-,0). (2)当AB=OA时,抛物线过O(0,0),A(-4,3),B(-8,0)三点, 设抛物线的函数表达式为y=ax2+bx, 可得方程组, 解得a=,, ∴; 当OA=OB时,同理得. (3)当OA=AB时,若BP∥OA,如图(5),作PE⊥x轴, 则∠AOC=∠PBE,∠ACO=∠PEB=90°, △AOC∽△PBE,. 设BE=4m,PE=3m,则点P的坐标为(4m-8,-3m), 代入, 解得m=3; 则点P的坐标为(4,-9), S梯形ABPO=S△ABO+S△BPO=48. 若OP∥AB,根据抛物线的对称性可得点P的坐标为(-12,-9), S梯形AOPB=S△ABO+S△BPO=48. 当OA=OB时,若BP∥OA,如图(6),作PF⊥x轴, 则∠AOC=∠PBF,∠ACO=∠PFB=90°, △AOC∽△PBF,; 设BF=4m,PF=3m,则点P的坐标为(4m-5,-3m), 代入, 解得m=.则点P的坐标为(1,-), S梯形ABPO=S△ABO+S△BPO=. 若OP∥AB(图略),作PF⊥x轴, 则∠ABC=∠POF,∠ACB=∠PFO=90°, △ABC∽△POF,; 设点P的坐标为(-n,-3n), 代入, 解得n=9. 则点P的坐标为(-9,-27),S梯形AOPB=S△ABO+S△BPO=75.
复制答案
考点分析:
相关试题推荐
如图,在直角坐标平面内,O为坐标原点,A点的坐标为(1,0),B点在x轴上且在点A的右侧,AB=OA,过点A和B作x轴的垂线分别交二次函数y=x2图象于点C和D,直线OC交BD于M,直线CD交y轴于点H.记C、D的横坐标分别为xc,xD,于点H的纵坐标yH
(1)证明:①S△CMD:S梯形ABMC=2:3;②xc•xD=-yH
(2)若将上述A点坐标(1,0)改为A点坐标(t,0)(t>0),其他条件不变,结论S△CMD:S梯形ABMC=2:3是否仍成立?请说明理由.
(3)若A的坐标(t,0)(t>0),又将条件y=x2改为y=ax2(a>0),其他条件不变,那么xc,xD和yH又有怎样的数量关系?写出关系式,并证明.

manfen5.com 满分网 查看答案
如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.
(1)求该抛物线的函数关系式;
(2)当△ADP是直角三角形时,求点P的坐标;
(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
一列火车自A城驶往B城,沿途有n个车站(包括起点站A和终点站B),该列火车挂有一节邮政车厢,运行时需要在每个车站停靠,每停靠一站不仅要卸下已经通过的各车站发给该站的邮包一个,还要装上该站发往下面行程中每个车站的邮包一个.
例如,当列车停靠在第x个车站时,邮政车厢上需要卸下已经通过的(x-1)个车站发给该站的邮包共(x-1)个,还要装上下面行程中要停靠的(n-x)个车站的邮包共(n-x)个.
(1)根据题意,完成下表:
车站序号在第x个车站起程时邮政车厢邮包总数
1n-1
2(n-1)-1+(n-2)=2(n-2)
32(n-2)-2+(n-3)=3(n-3)
4
5
n
(2)根据上表,写出列车在第x车站启程时,邮政车厢上共有邮包的个数y(用x、n表示);
(3)当n=18时,列车在第几个车站启程时邮政车厢上邮包的个数最多?
查看答案
一辆电瓶车在实验过程中,前10秒行驶的路程s(米)与时间t(秒)满足关系式s=at2,第10秒末开始匀速行驶,第24秒末开始刹车,第28秒末停在离终点20米处.下图是电瓶车行驶过程中第2秒记录一次的图象.
(1)求电瓶车从出发到刹车时的路程s(米)与时间t(秒)的函数关系式.
(2)如果第24秒末不刹车继续匀速行驶,那么出发多少秒后通过终点?
(3)如果10秒后仍按s=at2的运动方式行驶,那么出发多少秒后通过终点?
(参考数据:manfen5.com 满分网≈2.24,manfen5.com 满分网≈2.45,计算结果保留两个有效数字.)

manfen5.com 满分网 查看答案
某通讯器材公司销售一种市场需求较大的新型通讯产品.已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)总计120万元.在销售过程中发现,年销售量y(万件)与销售单价x(元)之间存在着如图所示的一次函数关系.
(1)求y关于x的函数关系式;
(2)试写出该公司销售该种产品的年获利z(万元)关于销售单价x(元)的函数关系式(年获利=年销售额一年销售产品总进价一年总开支).当销售单价x为何值时,年获利最大并求这个最大值;
(3)若公司希望该种产品一年的销售获利不低于40万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.