已知二次函数y=x
2+bx+c+1的图象过点P(2,1).
(1)求证:c=-2b-4;
(2)求bc的最大值;
(3)若二次函数的图象与x轴交于点A(x
1,0)、B(x
2,0),△ABP的面积是
,求b的值.
考点分析:
相关试题推荐
在平面直角坐标系中,抛物线过原点O,且与x轴交于另一点A,其顶点为B.孔明同学用一把宽为3cm带刻度的矩形直尺对抛物线进行如下测量:
①量得OA=3cm;
②把直尺的左边与抛物线的对称轴重合,使得直尺左下端点与抛物线的顶点重合(如图1),测得抛物线与直尺右边的交点C的刻度读数为4.5.
请完成下列问题:
(1)写出抛物线的对称轴;
(2)求抛物线的解析式;
(3)将图中的直尺(足够长)沿水平方向向右平移到点A的右边(如图2),直尺的两边交x轴于点H、G,交抛物线于点E、F.求证:S
梯形EFGH=
(EF
2-9).
查看答案
如图,平面直角坐标系中有一矩形ABCO(O为原点),点A、C分别在x轴、y轴上,且C点坐标为(0,6);将BCD沿BD折叠(D点在OC边上),使C点落在OA边的E点上,并将BAE沿BE折叠,恰好使点A落在BD的点F上.
(1)直接写出∠ABE、∠CBD的度数,并求折痕BD所在直线的函数解析式;
(2)过F点作FG⊥x轴,垂足为G,FG的中点为H,若抛物线y=ax
2+bx+c经过B、H、D三点,求抛物线的函数解析式;
(3)若点P是矩形内部的点,且点P在(2)中的抛物线上运动(不含B、D点),过点P作PN⊥BC分别交BC和BD于点N、M,设h=PM-MN,试求出h与P点横坐标x的函数解析式,并画出该函数的简图,分别写出使PM<NM、PM=MN、PM>MN成立的x的取值范围.
查看答案
已知直角坐标系中有一点A(-4,3),点B在x轴上,△AOB是等腰三角形.
(1)求满足条件的所有点B的坐标;
(2)求过O,A,B三点且开口向下的抛物线的函数表达式(只需求出满足条件的一条即可);
(3)在(2)中求出的抛物线上存在点P,使得以O,A,B,P四点为顶点的四边形是梯形,求满足条件的所有点P的坐标及相应梯形的面积.
查看答案
如图,在直角坐标平面内,O为坐标原点,A点的坐标为(1,0),B点在x轴上且在点A的右侧,AB=OA,过点A和B作x轴的垂线分别交二次函数y=x
2图象于点C和D,直线OC交BD于M,直线CD交y轴于点H.记C、D的横坐标分别为x
c,x
D,于点H的纵坐标y
H.
(1)证明:①S
△CMD:S
梯形ABMC=2:3;②x
c•x
D=-y
H;
(2)若将上述A点坐标(1,0)改为A点坐标(t,0)(t>0),其他条件不变,结论S
△CMD:S
梯形ABMC=2:3是否仍成立?请说明理由.
(3)若A的坐标(t,0)(t>0),又将条件y=x
2改为y=ax
2(a>0),其他条件不变,那么x
c,x
D和y
H又有怎样的数量关系?写出关系式,并证明.
查看答案
如图,已知抛物线y=ax
2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.
(1)求该抛物线的函数关系式;
(2)当△ADP是直角三角形时,求点P的坐标;
(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.
查看答案