满分5 > 初中数学试题 >

已知:函数y=ax2+x+1的图象与x轴只有一个公共点. (1)求这个函数关系式...

已知:函数y=ax2+x+1的图象与x轴只有一个公共点.
(1)求这个函数关系式;
(2)如图所示,设二次函数y=ax2+x+1图象的顶点为B,与y轴的交点为A,P为图象上的一点,若以线段PB为直径的圆与直线AB相切于点B,求P点的坐标;
(3)在(2)中,若圆与x轴另一交点关于直线PB的对称点为M,试探索点M是否在抛物线y=ax2+x+1上?若在抛物线上,求出M点的坐标;若不在,请说明理由.

manfen5.com 满分网
(1)此题应分两种情况:①a=0,此函数是一次函数,与x轴只有一个交点; ②a≠0,此函数是二次函数,可由根的判别式求出a的值,以此确定其解析式; (2)设圆与x轴的另一个交点为C,连接PC,由圆周角定理知PC⊥BC;由于PB是圆的直径,且AB切圆于B,得PB⊥AB,由此可证得△PBC∽△BAO,根据两个相似三角形的对应直角边成比例,即可得到PC、BC的比例关系,可根据这个比例关系来设P点的坐标,联立抛物线的解析式即可求出P点的坐标; (3)连接CM,设CM与PB的交点为Q,由于C、M关于直线PB对称,那么PB垂直平分CM,即CQ=QM;过M作MD⊥x轴于D,取CD的中点E,连接QE,则QE是Rt△CMD的中位线;在Rt△PCB中,CQ⊥OB,QE⊥BC,易证得∠BQE、∠QCE都和∠CPQ相等,因此它们的正切值都等于(在(2)题已经求得);由此可得到CE=2QE=4BE,(2)中已经求出了CB的长,根据CE、BE的比例关系,即可求出BE、CE、QE的长,由此可得到Q点坐标,也就得到M点的坐标,然后将点M代入抛物线的解析式中进行判断即可. 【解析】 (1)当a=0时,y=x+1,图象与x轴只有一个公共点(1分) 当a≠0时,△=1-4a=0,a=,此时,图象与x轴只有一个公共点. ∴函数的解析式为:y=x+1或y=x2+x+1;(3分) (2)设P为二次函数图象上的一点,过点P作PC⊥x轴于点C; ∵y=ax2+x+1是二次函数,由(1)知该函数关系式为: y=x2+x+1, ∴顶点为B(-2,0),图象与y轴的交点 坐标为A(0,1)(4分) ∵以PB为直径的圆与直线AB相切于点B ∴PB⊥AB则∠PBC=∠BAO ∴Rt△PCB∽Rt△BOA ∴=,故PC=2BC,(5分) 设P点的坐标为(x,y), ∵∠ABO是锐角,∠PBA是直角, ∴∠PBO是钝角, ∴x<-2 ∴BC=-2-x,PC=-4-2x, 即y=-4-2x,P点的坐标为(x,-4-2x) ∵点P在二次函数y=x2+x+1的图象上, ∴-4-2x=x2+x+1(6分) 解之得:x1=-2,x2=-10 ∵x<-2, ∴x=-10, ∴P点的坐标为:(-10,16)(7分) (3)点M不在抛物线y=ax2+x+1上(8分) 由(2)知:C为圆与x轴的另一交点,连接CM,CM与直线PB的交点为Q,过点M作x轴的垂线,垂足为D,取CD的中点E,连接QE,则CM⊥PB,且CQ=MQ,即QE是中位线. ∴QE∥MD,QE=MD,QE⊥CE ∵CM⊥PB,QE⊥CE,PC⊥x轴 ∴∠QCE=∠EQB=∠CPB ∴tan∠QCE=tan∠EQB=tan∠CPB= CE=2QE=2×2BE=4BE,又CB=8, 故BE=,QE= ∴Q点的坐标为(-,) 可求得M点的坐标为(,)(11分) ∵++1=≠ ∴C点关于直线PB的对称点M不在抛物线y=ax2+x+1上.(12分) (其它解法,仿此得分)
复制答案
考点分析:
相关试题推荐
将直角边长为6的等腰Rt△AOC放在如图所示的平面直角坐标系中,点O为坐标原点,点C、A分别在x、y轴的正半轴上,一条抛物线经过点A、C及点B(-3,0).
(1)求该抛物线的解析式;
(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当△APE的面积最大时,求点P的坐标;
(3)在第一象限内的该抛物线上是否存在点G,使△AGC的面积与(2)中△APE的最大面积相等?若存在,请求出点G的坐标;若不存在,请说明理由.
manfen5.com 满分网
查看答案
如图,直线y=hx+d与x轴和y轴分别相交于点A(-1,0),B(0,1),与双曲线y=manfen5.com 满分网在第一象限相交于点C;以AC为斜边、∠CAO为内角的直角三角形,与以CO为对角线、一边在x轴上的矩形面积相等;点C,P在以B为顶点的抛物线y=mx2+nx+k上;直线y=hx+d、双曲线y=manfen5.com 满分网和抛物线y=ax2+bx+c同时经过两个不同的点C,D.
(1)确定t的值;
(2)确定m,n,k的值;
(3)若无论a,b,c取何值,抛物线y=ax2+bx+c都不经过点P,请确定P的坐标.

manfen5.com 满分网 查看答案
如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).
(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;
(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;
(3)在图1中,设点D坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.
manfen5.com 满分网
查看答案
如图,在平面直角坐标系中,已知A、B、C三点的坐标分别为A(-2,0),B(6,0),C(0,3).
(1)求经过A、B、C三点的抛物线的解析式;
(2)过C点作CD平行于x轴交抛物线于点D,写出D点的坐标,并求AD、BC的交点E的坐标;
(3)若抛物线的顶点为P,连接PC、PD,判断四边形CEDP的形状,并说明理由.

manfen5.com 满分网 查看答案
manfen5.com 满分网已知二次函数的图象与x轴有且只有一个交点A(-2,0),与y轴的交点为B(0,4),且其对称轴与y轴平行.
(1)求该二次函数的解析式,并在所给出坐标系中画出这个二次函数的大致图象;
(2)在该二次函数位于A、B两点之间的图象上取上点M,过点M分别作x轴、y轴的垂线段,垂足分别为点C、D.求矩形MCOD的周长的最小值和此时点M的坐标.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.