满分5 > 初中数学试题 >

如图,矩形ABCD的顶点A、B的坐标分别为(-4,0)和(2,0),BC=.设直...

如图,矩形ABCD的顶点A、B的坐标分别为(-4,0)和(2,0),BC=manfen5.com 满分网.设直线AC与直线x=4交于点E.
(1)求以直线x=4为对称轴,且过C与原点O的抛物线的函数关系式,并说明此抛物线一定过点E;
(2)设(1)中的抛物线与x轴的另一个交点为N,M是该抛物线上位于C、N之间的一动点,求△CMN面积的最大值.

manfen5.com 满分网
(1)设直线x=4与x轴的交点为F,易证得△ABC∽△AFE,根据相似三角形得到的比例线段即可求出EF的长,也就得到了E点的坐标;可用待定系数法求出抛物线的解析式,然后将E点坐标代入其中进行判断即可; (2)过M作y轴的平行线,交直线CN于P,交x轴于Q;根据抛物线的解析式可求出N点的坐标,进而可求出直线CN的解析式,设出Q点的坐标,即可根据抛物线和直线的解析式求出MP的长;以MP为底,C、N的横坐标差的绝对值为高即可得到△CMN的面积,由此可求出关于△CMN的面积与Q点横坐标的函数关系式,根据函数的性质即可得到△CMN的最大面积. 【解析】 (1)设抛物线的函数关系式为:y=a(x-4)2+m, ∵抛物线过C与原点O, ∴, 解得:, ∴所求抛物线的函数关系式为:y=-(x-4)2+, 设直线AC的函数关系式为y=kx+b, , 解得:. ∴直线AC的函数关系式为:y=x+, ∴点E的坐标为(4,) ∴此抛物线过E点. (2)过M作MQ∥y轴,交x轴于Q,交直线CN于P; 易知:N(8,0),C(2,2); 可得直线CN的解析式为y=-x+; 设点Q的坐标为(m,0),则P(m,-m+),M(m,-m2+m); ∴MP=-m2+m-(-m+)=-m2+m-; ∴S=S△CMN=S△CPM+S△MNP=MP•|xM-xC|+MP•|xN-xM|=MP•|xN-xC|=×(-m2+m-)×6=-m2+5m-8; 即S=-(m-5)2+(2<m<8); ∵2<5<8, ∴当m=5时,Smax=; 即△CMN的最大面积为.
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系中放置一矩形ABCO,其顶点为A(0,1)、B(-3manfen5.com 满分网,1)、C(-3manfen5.com 满分网,0)、O(0,0).将此矩形沿着过E(-manfen5.com 满分网,1)、F(-manfen5.com 满分网,0)的直线EF向右下方翻折,B、C的对应点分别为B′、C′.
(1)求折痕所在直线EF的解析式;
(2)一抛物线经过B、E、B′三点,求此二次函数解析式;
(3)能否在直线EF上求一点P,使得△PBC周长最小?如能,求出点P的坐标;若不能,说明理由.

manfen5.com 满分网 查看答案
如图,抛物线y1=ax2-2ax+b经过A(-1,0),C(0,manfen5.com 满分网)两点,与x轴交于另一点B.
(1)求此抛物线的解析式;
(2)若抛物线的顶点为M,点P为线段OB上一动点(不与点B重合),点Q在线段MB上移动,且∠MPQ=45°,设线段OP=x,MQ=manfen5.com 满分网y2,求y2与x的函数关系式,并直接写出自变量x的取值范围;
(3)在同一平面直角坐标系中,两条直线x=m,x=n分别与抛物线交于点E、G,与(2)中的函数图象交于点F、H.问四边形EFHG能否成为平行四边形?若能,求m、n之间的数量关系;若不能,请说明理由.
manfen5.com 满分网
查看答案
在平面直角坐标系中,点O是坐标原点,点P(m,-1)(m>0).连接OP,将线段OP绕点O按逆时针方向旋转90°得到线段OM,且点M是抛物线y=ax2+bx+c的顶点.
(1)若m=1,抛物线y=ax2+bx+c经过点(2,2),当0≤x≤1时,求y的取值范围;
(2)已知点A(1,0),若抛物线y=ax2+bx+c与y轴交于点B,直线AB与抛物线y=ax2+bx+c有且只有一个交点,请判断△BOM的形状,并说明理由.
查看答案
如图,直线y=-x+6与x轴交于点A,与y轴交于点B,以线段AB为直径作⊙C,抛物线y=ax2+bx+c过A、C、O三点.
(1)求点C的坐标和抛物线的解析式;
(2)过点B作直线与x轴交于点D,且OB2=OA•OD,求证:DB是⊙C的切线;
(3)抛物线上是否存在一点P,使以P、O、C、A为顶点的四边形为直角梯形?如果存在,求出点P的坐标;如果不存在,请说明理由.
manfen5.com 满分网
查看答案
manfen5.com 满分网如图,已知抛物线y=ax2-4x+c经过点A(0,-6)和B(3,-9).
(1)求出抛物线的解析式;
(2)写出抛物线的对称轴方程及顶点坐标;
(3)点P(m,m)与点Q均在抛物线上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q的坐标;
(4)在满足(3)的情况下,在抛物线的对称轴上寻找一点M,使得△QMA的周长最小.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.