满分5 > 初中数学试题 >

如图,已知点B(1,3),C(1,0),直线y=x+k经过点B,且与x轴交于点A...

如图,已知点B(1,3),C(1,0),直线y=x+k经过点B,且与x轴交于点A,将△ABC沿直线AB折叠得到△ABD.
(1)填空:A点坐标为(____________),D点坐标为(____________);
(2)若抛物线y=manfen5.com 满分网x2+bx+c经过C,D两点,求抛物线的解析式;
(3)将(2)中的抛物线沿y轴向上平移,设平移后所得抛物线与y轴交点为E,点M是平移后的抛物线与直线AB的公共点,在抛物线平移过程中是否存在某一位置使得直线EM∥x轴.若存在,此时抛物线向上平移了几个单位?若不存在,请说明理由.
(提示:抛物线y=ax2+bx+c(a≠0)的对称轴是x=-manfen5.com 满分网,顶点坐标是(-manfen5.com 满分网manfen5.com 满分网

manfen5.com 满分网
(1)A、D两坐标可由图象看出.(2)抛物线y=x2+bx+c经过C(1,0),D(-2,3),两点代入解析式,解得b、c.(3)当点M在抛物线对称轴的左侧或在抛物线的顶点时,仅当M,E重合时,它们的纵坐标相等,故知道EM不会与x轴平行,设抛物线向上平移H个单位能使EM∥x轴,写出平移后的解析式,根据抛物线的对称性,可知点M的坐标为(2,+h)时,直线EM∥x轴,将点M代入直线y=x+2,解得h. 【解析】 (1)A(-2,0),D(-2,3) (2)∵抛物线y=x2+bx+c经过C(1,0),D(-2,3)代入,解得:b=-,c= ∴所求抛物线解析式为:y=x2-x+; (3)答:存在. ∵当点M在抛物线对称轴的左侧或在抛物线的顶点时,仅当M,E重合时,它们的纵坐标相等. ∴EM不会与x轴平行, 当点M在抛物线的右侧时, 设抛物线向上平移H个单位能使EM∥x轴, 则平移后的抛物线的解析式为 ∵y=(x-1)2+h, ∴抛物线与y轴交点E(0,+h), ∵抛物线的对称轴为:x=1, 根据抛物线的对称性,可知点M的坐标为(2,+h)时,直线EM∥x轴, 将(2,+h)代入y=x+2得+h=2+2 解得:h=. ∴抛物线向上平移个单位能使EM∥x轴.
复制答案
考点分析:
相关试题推荐
已知抛物线y=ax2+bx+c经过A(-4,3)、B(2,0)两点,当x=3和x=-3时,这条抛物线上对应点的纵坐标相等.经过点C(0,-2)的直线l与x轴平行,O为坐标原点.
(1)求直线AB和这条抛物线的解析式;
(2)以A为圆心,AO为半径的圆记为⊙A,判断直线l与⊙A的位置关系,并说明理由;
(3)设直线AB上的点D的横坐标为-1,P(m,n)是抛物线y=ax2+bx+c上的动点,当△PDO的周长最小时,求四边形CODP的面积.

manfen5.com 满分网 查看答案
如图,已知二次函数y=-manfen5.com 满分网+bx+c的图象经过A(2,0)、B(0,-6)两点.
(1)求这个二次函数的解析式;
(2)设该二次函数的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积.

manfen5.com 满分网 查看答案
如图1,抛物线manfen5.com 满分网与x轴交于A、C两点,与y轴交于B点,与直线y=kx+b交于A、D两点.
(1)直接写出A、C两点坐标和直线AD的解析式;
(2)如图2,质地均匀的正四面体骰子的各个面上依次标有数字-1、1、3、4.随机抛掷这枚骰子两次,把第一次着地一面的数字m记做P点的横坐标,第二次着地一面的数字n记做P点的纵坐标.则点P(m,n)落在图1中抛物线与直线围成区域内(图中阴影部分,含边界)的概率是多少?
manfen5.com 满分网
查看答案
如图所示,已知直线y=manfen5.com 满分网x与抛物线y=ax2+b(a≠0)交于A(-4,-2),B(6,3)两点.抛物线与y轴的交点为C.
(1)求这个抛物线的解析式;
(2)在抛物线上存在点M,是△MAB是以AB为底边的等腰三角形,求点M的坐标;
(3)在抛物线上是否存在点P使得△PAC的面积是△ABC面积的manfen5.com 满分网?若存在,试求出此时点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,已知点A(-3,0)和B(1,0),直线y=kx-4经过点A并且与y轴交于点C.
(1)求点C的坐标;
(2)求经过A、B、C三点的抛物线的解析式和对称轴;
(3)半径为1个单位长度的动圆⊙P的圆心P始终在抛物线的对称轴上.当点P的纵坐标为5时,将⊙P以每秒1个单位长度的速度在抛物线的对称轴上移动.那么,经过几秒,⊙P与直线AC开始有公共点?经过几秒后,⊙P与直线AC不再有公共点?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.