满分5 > 初中数学试题 >

如图:二次函数y=-x2+ax+b的图象与x轴交于A(-,0),B(2,0)两点...

如图:二次函数y=-x2+ax+b的图象与x轴交于A(-manfen5.com 满分网,0),B(2,0)两点,且与y轴交于点C.
(1)求该抛物线的解析式,并判断△ABC的形状;
(2)在x轴上方的抛物线上有一点D,且A、C、D、B四点为顶点的四边形是等腰梯形,请直接写出D点的坐标;
(3)在此抛物线上是否存在点P,使得以A、C、B、P四点为顶点的四边形是直角梯形?若存在,求出P点的坐标;若不存在,说明理由.

manfen5.com 满分网
(1)将A、B的坐标代入抛物线的解析式中即可确定抛物线的解析式;进而可得到C点坐标,进而可求出AC、BC、AB的长,然后再判断△ABC的形状; (2)根据抛物线和等腰梯形的对称性知,点C关于抛物线对称轴的对称点符合点D的要求,由此可求出点D的坐标; (3)在(1)题已将证得∠ACB=90°,若A、C、B、P四点为顶点的四边形是直角梯形,则有两种情况需要考虑: ①以BC、AP为底,AC为高;可先求出直线BC的解析式,进而可确定直线AP的解析式,联立抛物线的解析式即可求出点P的坐标. ②以AC、BP为底,BC为高;方法同①. 【解析】 (1)由题意得:, 解得; ∴抛物线的解析式为y=-x2+x+1; ∴C(0,1); ∴AC2=+1=,BC2=1+4=5,AB2=(2+)2=; ∴AC2+BC2=AB2,即△ABC是直角三角形,且∠ACB=90°; (2)由(1)的抛物线知:其对称轴方程为x=; 根据抛物线和等腰梯形的对称性知:点D(,1); (3)存在,点P(,-)或(-,-9); 若以A、C、B、P四点为顶点的直角梯形以BC、AP为底; ∵B(2,0),C(0,1), ∴直线BC的解析式为:y=-x+1; 设过点A且平行于BC的直线的解析式为y=-x+h, 则有:(-)×(-)+h=0,h=-; ∴y=-x-; 联立抛物线的解析式有: , 解得,; ∴点P(,-); 若以A、C、B、P四点为顶点的直角梯形以AC、BP为底, 同理可求得P(-,-9); 故当P(,-)或(-,-9)时,以A、C、B、P四点为顶点的四边形是直角梯形. (根据抛物线的对称性求出另一个P点坐标亦可)
复制答案
考点分析:
相关试题推荐
在平面直角坐标系中,点A、B的坐标分别为(10,0),(2,4).
(1)若点C是点B关于x轴的对称点,求经过O、C、A三点的抛物线的解析式;
(2)若P为抛物线上异于C的点,且△OAP是直角三角形,请直接写出点P的坐标;
(3)若抛物线顶点为D,对称轴交x轴于点M,探究:抛物线对称轴上是否存在异于D的点Q,使△AQD是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
查看答案
已知二次函数y1=x2-2x-3及一次函数y2=x+m.
(1)求该二次函数图象的顶点坐标以及它与x轴的交点坐标;
(2)将该二次函数图象在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象.请你在图中画出这个新图象,并求出新图象与直线y2=x+m有三个不同公共点时m的值;
(3)当0≤x≤2时,函数y=y1+y2+(m-2)x+3的图象与x轴有两个不同公共点,求m的取值范围.

manfen5.com 满分网 查看答案
如图,在直角坐标系xOy中,正方形OCBA的顶点A,C分别在y轴,x轴上,点B坐标为(6,6),抛物线y=ax2+bx+c经过点A,B两点,且3a-b=-1.
(1)求a,b,c的值;
(2)如果动点E,F同时分别从点A,点B出发,分别沿A→B,B→C运动,速度都是每秒1个单位长度,当点E到达终点B时,点E,F随之停止运动,设运动时间为t秒,△EBF的面积为S.
①试求出S与t之间的函数关系式,并求出S的最大值;
②当S取得最大值时,在抛物线上是否存在点R,使得以E,B,R,F为顶点的四边形是平行四边形?如果存在,求出点R的坐标;如果不存在,请说明理由.
manfen5.com 满分网
查看答案
manfen5.com 满分网如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=manfen5.com 满分网+bx+c经过B点,且顶点在直线x=manfen5.com 满分网上.
(1)求抛物线对应的函数关系式;
(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;
(3)在(2)的前提下,若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N.设点M的横坐标为t,MN的长度为l.求l与t之间的函数关系式,并求l取最大值时,点M的坐标.
查看答案
如图,将腰长为manfen5.com 满分网的等腰Rt△ABC(∠C是直角)放在平面直角坐标系中的第二象限,其中点A在y轴上,点B在抛物线y=ax2+ax-2上,点C的坐标为(-1,0).
(1)点A的坐标为______,点B的坐标为______
(2)抛物线的关系式为______,其顶点坐标为______
(3)将三角板ABC绕顶点A逆时针方向旋转90°,到达△AB′C′的位置.请判断点B′、C′是否在(2)中的抛物线上,并说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.