如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线y=-x
2+bx+c经过坐标原点O和x轴上另一点E(4,0)
(1)当x取何值时,该抛物线取最大值?该抛物线的最大值是多少?
(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
①当t=
时,判断点P是否在直线ME上,并说明理由;
②以P、N、C、D为顶点的多边形面积是否可能为5?若有可能,求出此时N点的坐标;若无可能,请说明理由.
考点分析:
相关试题推荐
如图所示,抛物线y=x
2+bx+c与x轴交于A,B两点,与y轴交于点C(0,2),连接AC,若tan∠OAC=2.
(1)求抛物线对应的二次函数的解析式;
(2)在抛物线的对称轴l上是否存在点P,使∠APC=90°?若存在,求出点P的坐标;若不存在,请说明理由;
(3)如图所示,连接BC,M是线段BC上(不与B、C重合)的一个动点,过点M作直线l′∥l,交抛物线于点N,连接CN、BN,设点M的横坐标为t.当t为何值时,△BCN的面积最大?最大面积为多少?
查看答案
如图,在平面直角示系中,A、B两点的坐标分别是A(-1,0)、B(4,0),点C在y轴的负半轴上,且∠ACB=90°
(1)求点C的坐标;
(2)求经过A、B、C三点的抛物线的解析式;
(3)直线l⊥x轴,若直线l由点A开始沿x轴正方向以每秒1个单位的速度匀速向右平移,设运动时间为t(0≤t≤5)秒,运动过程中直线l在△ABC中所扫过的面积为S,求S与t的函数关系式.
查看答案
△ABC中,∠A=∠B=30°,AB=2
,把△ABC放在平面直角坐标系中,使AB的中点位于坐标原点O(如图),△ABC可以绕点O作任意角度的旋转.
(1)当点B在第一象限,纵坐标是
时,求点B的横坐标;
(2)如果抛物线y=ax
2+bx+c(a≠0)的对称轴经过点C,请你探究:
①当a=
,b=-
,c=-
时,A,B两点是否都在这条抛物线上?并说明理由;
②设b=-2am,是否存在这样的m的值,使A,B两点不可能同时在这条抛物线上?若存在,直接写出m的值;若不存在,请说明理由.
查看答案
已知:抛物线y=ax
2+bx+c(a≠0),顶点C(1,-4),与x轴交于A、B两点,A(-1,0).
(1)求这条抛物线的解析式;
(2)如图,以AB为直径作圆,与抛物线交于点D,与抛物线的对称轴交于点E,依次连接A、D、B、E,点Q为线段AB上一个动点(Q与A、B两点不重合),过点Q作QF⊥AE于F,QG⊥DB于G,请判断
是否为定值?若是,请求出此定值;若不是,请说明理由;
(3)在(2)的条件下,若点H是线段EQ上一点,过点H作MN⊥EQ,MN分别与边AE、BE相交于M、N,(M与A、E不重合,N与E、B不重合),请判断
是否成立?若成立,请给出证明;若不成立,请说明理由.
查看答案
如图,已知抛物线y=ax
2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标;
(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90°的点P的坐标.
查看答案