满分5 > 初中数学试题 >

如图所示,抛物线y=-x2+2x+3与x轴交于A、B两点,直线BD的函数表达式为...

如图所示,抛物线y=-x2+2x+3与x轴交于A、B两点,直线BD的函数表达式为manfen5.com 满分网,抛物线的对称轴l与直线BD交于点C、与x轴交于点E.
(1)求A、B、C三个点的坐标;
(2)点P为线段AB上的一个动点(与点A、点B不重合),以点A为圆心、以AP为半径的圆弧与线段AC交于点M,以点B为圆心、以BP为半径的圆弧与线段BC交于点N,分别连接AN、BM、MN.
①求证:AN=BM;
②在点P运动的过程中,四边形AMNB的面积有最大值还是有最小值?并求出该最大值或最小值.

manfen5.com 满分网
(1)抛物线的解析式中,令y=0,即可求出A、B点的坐标;联立抛物线的对称轴方程及直线BD的解析式即可求出C点的坐标; (2)①求简单的线段相等,可证线段所在的三角形全等,即证△ABN≌△BCM即可; ②由图知:四边形AMNB的面积为△ABC与△CMN的面积差,等边△ABC的面积易求得,关键是求△CMN的面积;过M作MF⊥CN于F,设AP=AM=m,则可用m表示出CM、BN、CN的长,进而可在Rt△MFC中,根据∠ACB的正弦值求出MF的表达式,由此可得到△CMN的面积,即可求得关于四边形AMNB的面积和m的函数关系式,即可根据函数的性质求出四边形AMNB的最大或最小值. 【解析】 (1)令-x2+2x+3=0, 解得:x1=-1,x2=3, ∴A(-1,0),B(3,0)(2分) ∵y=-x2+2x+3=-(x-1)2+4, ∴抛物线的对称轴为直线x=1, 将x=1代入, 得y=2, ∴C(1,2);(3分) (2)①在Rt△ACE中,tan∠CAE=, ∴∠CAE=60°, 由抛物线的对称性可知l是线段AB的垂直平分线, ∴AC=BC, ∴△ABC为等边三角形,(4分) ∴AB=BC=AC=4,∠ABC=∠ACB=60°, 又∵AM=AP,BN=BP, ∴BN=CM, ∵在△ABN与△BCM中, , ∴△ABN≌△BCM(SAS), ∴AN=BM;(5分) ②四边形AMNB的面积有最小值.(6分) 设AP=m,四边形AMNB的面积为S, 由①可知AB=BC=4,BN=CM=BP,S△ABC=×42=, ∴CM=BN=BP=4-m,CN=m, 过M作MF⊥BC,垂足为F 则MF=MC•sin60°=, ∴S△CMN==•=,(7分) ∴S=S△ABC-S△CMN =-() =(8分) ∴m=2时,S取得最小值3.(9分)
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系中,顶点为(4,-1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).
(1)求此抛物线的解析式
(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;
(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.

manfen5.com 满分网 查看答案
如图,已知抛物线y=-manfen5.com 满分网x2+x+4交x轴的正半轴于点A,交y轴于点B.
(1)求A、B两点的坐标,并求直线AB的解析式;
(2)设P(x,y)(x>0)是直线y=x上的一点,Q是OP的中点(O是原点),以PQ为对角线作正方形PEQF,若正方形PEQF与直线AB有公共点,求x的取值范围;
(3)在(2)的条件下,记正方形PEQF与△OAB公共部分的面积为S,求S关于x的函数解析式,并探究S的最大值.

manfen5.com 满分网 查看答案
如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,DB⊥DC,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M.点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q.
(1)求经过B、E、C三点的抛物线的解析式;
(2)是否存在点P,使得以P、Q、M为顶点的三角形与△AOD相似?若存在,求出满足条件的点P的坐标;若不存在,请说明理由;
(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.

manfen5.com 满分网 查看答案
如图,抛物线y=ax2+bx+1与x轴交于两点A(-1,0),B(1,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)过点B作BD∥CA抛物线交于点D,求四边形ACBD的面积;
(3)在x轴下方的抛物线上是否存在点M,过M作MN⊥x轴于点N,使以A、M、N为顶点的三角形与△BCD相似?若存在,则求出点M的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,已知经过原点的抛物线y=-2x2+4x与x轴的另一交点为A,现将它向右平移m(m>0)个单位,所得抛物线与x轴交于C、D两点,与原抛物线交于点P.
(1)求点A的坐标,并判断△PCA存在时它的形状(不要求说理);
(2)在x轴上是否存在两条相等的线段?若存在,请一一找出,并写出它们的长度(可用含m的式子表示);若不存在,请说明理由;
(3)设△CDP的面积为S,求S关于m的关系式.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.