满分5 > 初中数学试题 >

如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,...

manfen5.com 满分网如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.
(1)求这个二次函数的表达式.
(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.
(1)将B、C的坐标代入抛物线的解析式中即可求得待定系数的值; (2)由于菱形的对角线互相垂直平分,若四边形POP′C为菱形,那么P点必在OC的垂直平分线上,据此可求出P点的纵坐标,代入抛物线的解析式中即可求出P点的坐标; (3)由于△ABC的面积为定值,当四边形ABPC的面积最大时,△BPC的面积最大;过P作y轴的平行线,交直线BC于Q,交x轴于F,易求得直线BC的解析式,可设出P点的横坐标,然后根据抛物线和直线BC的解析式求出Q、P的纵坐标,即可得到PQ的长,以PQ为底,B点横坐标的绝对值为高即可求得△BPC的面积,由此可得到关于四边形ACPB的面积与P点横坐标的函数关系式,根据函数的性质即可求出四边形ABPC的最大面积及对应的P点坐标. 【解析】 (1)将B、C两点的坐标代入得, 解得:; 所以二次函数的表达式为:y=x2-2x-3(3分) (2)存在点P,使四边形POP′C为菱形; 设P点坐标为(x,x2-2x-3),PP′交CO于E 若四边形POP′C是菱形,则有PC=PO; 连接PP′,则PE⊥CO于E, ∴OE=EC= ∴y=;(6分) ∴x2-2x-3= 解得x1=,x2=(不合题意,舍去) ∴P点的坐标为(,)(8分) (3)过点P作y轴的平行线与BC交于点Q,与OB交于点F,设P(x,x2-2x-3), 易得,直线BC的解析式为y=x-3 则Q点的坐标为(x,x-3); S四边形ABPC=S△ABC+S△BPQ+S△CPQ =AB•OC+QP•BF+QP•OF = =(10分) 当时,四边形ABPC的面积最大 此时P点的坐标为,四边形ABPC的面积的最大值为.(12分)
复制答案
考点分析:
相关试题推荐
已知:抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于C点,且A(-1,0),点B在x轴的正半轴上,OC=3OA(O为坐标原点).
(1)求抛物线的解析式;
(2)若点E是抛物线上的一个动点且在x轴下方和抛物线对称轴的左侧,过E作EF∥x轴交抛物线于另一点F,作ED⊥x轴于点D,FG⊥x轴于点G,求四边形DEFG周长m的最大值;
(3)设抛物线顶点为P,当四边形DEFG周长m取得最大值时,以EF为边的平行四边形面积是△AEP面积的2倍,另两顶点钟有一顶点Q在抛物线上,求Q点的坐标.

manfen5.com 满分网 查看答案
如图1,在平面直角坐标系中,点B在直线y=2x上,过点B作x轴的垂线,垂足为A,OA=5.若抛物线manfen5.com 满分网过点O、A两点.
(1)求该抛物线的解析式;
(2)若A点关于直线y=2x的对称点为C,判断点C是否在该抛物线上,并说明理由;
(3)如图2,在(2)的条件下,⊙O1是以BC为直径的圆.过原点O作O1的切线OP,P为切点(P与点C不重合),抛物线上是否存在点Q,使得以PQ为直径的圆与O1相切?若存在,求出点Q的横坐标;若不存在,请说明理由.
manfen5.com 满分网
查看答案
如图所示,平面直角坐标系中,抛物线y=ax2+bx+c经过A(0,4)、B(-2,0)、C(6,0).过点A作AD∥x轴交抛物线于点D,过点D作DE⊥x轴,垂足为点E.点M是四边形OADE的对角线的交点,点F在y轴负半轴上,且F(0,-2).
(1)求抛物线的解析式,并直接写出四边形OADE的形状;
(2)当点P、Q从C、F两点同时出发,均以每秒1个长度单位的速度沿CB、FA方向运动,点P运动到O时P、Q两点同时停止运动.设运动的时间为t秒,在运动过程中,以P、Q、O、M四点为顶点的四边形的面积为S,求出S与t之间的函数关系式,并写出自变量的取值范围;
(3)在抛物线上是否存在点N,使以B、C、F、N为顶点的四边形是梯形?若存在,直接写出点N的坐标;不存在,说明理由.

manfen5.com 满分网 查看答案
如图,直线y=-x-1与抛物线y=ax2+bx-4都经过点A(-1,0)、C(3,-4).
(1)求抛物线的解析式;
(2)动点P在线段AC上,过点P作x轴的垂线与抛物线相交于点E,求线段PE长度的最大值;
(3)当线段PE的长度取得最大值时,在抛物线上是否存在点Q,使△PCQ是以PC为直角边的直角三角形?若存在,请求出Q点的坐标;若不存在.请说明理由.

manfen5.com 满分网 查看答案
如图所示,已知直线y=kx-1与抛物线y=ax2+bx+c交于A(-3,2)、B(0,-1)两点,抛物线的顶点为C(-1,-2),对称轴交直线AB于点D,连接OC.
(1)求k的值及抛物线的解析式;
(2)若P为抛物线上的点,且以P、A、D三点构成的三角形是以线段AD为一条直角边的直角三角形,请求出满足条件的点P的坐标;
(3)在(2)的条件下所得的三角形是否与△OCD相似?请直接写出判断结果,不必写出证明过程.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.