满分5 > 初中数学试题 >

已知抛物线y=ax2+bx+c(a≠0)经过点B(2,0)和点C(0,8),且它...

已知抛物线y=ax2+bx+c(a≠0)经过点B(2,0)和点C(0,8),且它的对称轴是直线x=-2.
(1)求抛物线与x轴的另一交点A的坐标;
(2)求此抛物线的解析式;
(3)连接AC,BC,若点E是线段AB上的一个动点(与点A,点B)不重合,过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式;
(4)在(3)的基础上试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

manfen5.com 满分网
(1)知道对称轴了和x轴上另一点,就能求出该点. (2)知道两点坐标和对称轴就能求出抛物线的解析式. (3)依题意,AE=m,则BE=8-m,由题意可知△BEF∽△BAC,求出EF,过点F作FG⊥AB,垂是为G,则sin∠FEG=sin∠CAB,进而求出FG,由S=S△BCE-S△BFE,进而求得S与m之间的函数关系式. (4)由S与m之间的函数关系式,求得S的最大值,算出点E坐标,判断三角形的形状. 【解析】 (1)∵抛物线y=ax2+bx+c的对称轴是直线x=-2, ∴由对称性可得A点的坐标为(-6,0); (2)∵点C(0,8)在抛物线y=ax2+bx+c的图象上 ∴c=8. 将A(-6,0),B(2,0)代入表达式得 , 解得. 故所求解析式为y=-x2-x+8. (3)依题意,AE=m,则BE=8-m, ∵OA=6,OC=8, ∴AC=10, ∵EF∥AC, ∴△BEF∽△BAC, ∴,即EF=, 过点F作FG⊥AB,垂是为G,则sin∠FEG=sin∠CAB=, ∴=, ∴FG=×=8-m, ∴S=S△BCE-S△BFE. =(8-m)×8-(8-m)(8-m), =-m2+4m, (4)存在.理由如下: ∵S=-m2+4m=-(m-4)2+8且-<0, ∴当m=4时,S有最大值,S最大值=8, ∵m=4, ∴点E的坐标为(-2,0), ∴△BCE为等腰三角形.
复制答案
考点分析:
相关试题推荐
如图,平面直角坐标系中有一直角梯形OMNH,点H的坐标为(-8,0),点N的坐标为(-6,-4).
(1)画出直角梯形OMNH绕点O旋转180°的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A,点N的对应点为B,点H的对应点为C);
(2)求出过A,B,C三点的抛物线的表达式;
(3)截取CE=OF=AD=m,且E,F,D分别在线段CO,OA,AB上,求四边形BEFD的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;
(4)在(3)的情况下,四边形BEFD是否存在邻边相等的情况?若存在,请直接写出此时m的值,并指出相等的邻边;若不存在,说明理由.
manfen5.com 满分网
查看答案
已知二次函数y=ax2+bx+c的图象经过点A(3,0),B(2,-3),C(0,-3).
(1)求此函数的解析式及图象的对称轴;
(2)点P从B点出发以每秒0.1个单位的速度沿线段BC向C点运动,点Q从O点出发以相同的速度沿线段OA向A点运动,其中一个动点到达端点时,另一个也随之停止运动.设运动时间为t秒.
①当t为何值时,四边形ABPQ为等腰梯形;
②设PQ与对称轴的交点为M,过M点作x轴的平行线交AB于点N,设四边形ANPQ的面积为S,求面积S关于时间t的函数解析式,并指出t的取值范围;当t为何值时,S有最大值或最小值.

manfen5.com 满分网 查看答案
如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3),设抛物线的顶点为D.
(1)求该抛物线的解析式与顶点D的坐标;
(2)以B、C、D为顶点的三角形是直角三角形吗?为什么?
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请指出符合条件的点P的位置,并直接写出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,已知二次函数y=ax2-4x+c的图象与坐标轴交于点A(-1,0)和点B(0,-5).
(1)求该二次函数的解析式;
(2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐标.

manfen5.com 满分网 查看答案
如图,四边形OABC是一张放在平面直角坐标系的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=15,OC=9,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作N点.
(1)求N点、M点的坐标;
(2)将抛物线y=x2-36向右平移a(0<a<10)个单位后,得到抛物线l,l经过点N,求抛物线l的解析式;
(3)①抛物线l的对称轴上存在点P,使得P点到M、N两点的距离之差最大,求P点的坐标;
②若点D是线段OC上的一个动点(不与O、C重合),过点D作DE∥OA交CN于E,设CD的长为m,△PDE的面积为S,求S与m之间的函数关系式,并说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.