满分5 > 初中数学试题 >

阅读材料: 如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条...

阅读材料:
如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:
S△ABC=manfen5.com 满分网ah,即三角形面积等于水平宽与铅垂高乘积的一半.
解答下列问题:
如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.
(1)求抛物线和直线AB的解析式;
(2)点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB
(3)是否存在一点P,使S△PAB=manfen5.com 满分网S△CAB?若存在,求出P点的坐标;若不存在,请说明理由.

manfen5.com 满分网 manfen5.com 满分网
(1)已知了顶点C坐标,可用顶点式的二次函数通式设出这个二次函数,然后根据A点的坐标可求出二次函数的解析式.然后根据求出的二次函数的解析式,求出B点的坐标,然后可用待定系数法用B、A的坐标求出AB所在直线的解析式; (2)要求三角形CAB的面积,根据题中给出的求三角形面积的求法,那么要先求出水平宽和铅垂高,求铅垂高就要求出C,D两点纵坐标,C点的坐标已知,可用(1)中的一次函数求出D点的纵坐标,那么C,D两点的纵坐标的差的绝对值就是三角形CAB的铅垂高,而水平宽是A点的横坐标,这样可根据题中给出的求三角形的面积的方法得出三角形CAB的面积; (3)可先根据(2)中三角形CAB的面积得出三角形PAB的面积,三角形PAB中,水平宽是A的横坐标为定值,因此根据三角形PAB的面积可得出此时的铅垂高,然后用抛物线的解析式以及一次函数的解析式,先表示出铅垂高,然后根据由三角形PAB的面积求出的铅垂高可得出关于x的方程,即可得出x的值,然后代入二次函数式中即可得出此点的坐标. 【解析】 (1)设抛物线的解析式为:y1=a(x-1)2+4 把A(3,0)代入解析式求得a=-1 所以y1=-(x-1)2+4=-x2+2x+3 设直线AB的解析式为:y2=kx+b 由y1=-x2+2x+3求得B点的坐标为(0,3) 把A(3,0),B(0,3)代入y2=kx+b中 解得:k=-1,b=3 所以y2=-x+3; (2)因为C点坐标为(1,4) 所以当x=1时,y1=4,y2=2 所以CD=4-2=2 S△CAB=×3×2=3(平方单位); (3)假设存在符合条件的点P,设P点的横坐标为x,△PAB的铅垂高为h, 则h=y1-y2=(-x2+2x+3)-(-x+3)=-x2+3x 由S△PAB=S△CAB 得:×3×(-x2+3x)=×3 化简得:4x2-12x+9=0 解得,x= 将x=代入y1=-x2+2x+3中, 解得P点坐标为(,).
复制答案
考点分析:
相关试题推荐
如图,正方形ABCO的边长为manfen5.com 满分网,以O为原点建立平面直角坐标系,点A在x轴的负半轴上,点C在y轴的正半轴上,把正方形ABCO绕点O顺时针旋转α后得到正方形A1B1C1O(α<45°),B1C1交y轴于点D,且D为B1C1的中点,抛物线y=ax2+bx+c过点A1、B1、C1
(1)求tanα的值;
(2)求点A1的坐标,并直接写出点B1、点C1的坐标;
(3)求抛物线的函数表达式及其对称轴;
(4)在抛物线的对称轴上是否存在点P,使△PB1C1为直角三角形?若存在,直接写出所有满足条件的点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,点A、C的坐标分别为(-1,0)、(0,-manfen5.com 满分网),点B在x轴上.已知某二次函数的图象经过A、B、C三点,且它的对称轴为直线x=1,点P为直线BC下方的二次函数图象上的一个动点(点P与B、C不重合),过点P作y轴的平行线交BC于点F.
(1)求该二次函数的解析式;
(2)若设点P的横坐标为m,用含m的代数式表示线段PF的长;
(3)求△PBC面积的最大值,并求此时点P的坐标.

manfen5.com 满分网 查看答案
如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.
(1)求抛物线的解析式;
(2)在抛物线上求点M,使△MOB的面积是△AOB面积的3倍;
(3)连接OA,AB,在x轴下方的抛物线上是否存在点N,使△OBN与△OAB相似?若存在,求出N点的坐标;若不存在,说明理由.

manfen5.com 满分网 查看答案
已知矩形纸片OABC的长为4,宽为3,以长OA所在的直线为x轴,O为坐标原点建立平面直角坐标系;点P是OA边上的动点(与点O、A不重合),现将△POC沿PC翻折得到△PEC,再在AB边上选取适当的点D,将△PAD沿PD翻折,得到△PFD,使得直线PE、PF重合.
(1)若点E落在BC边上,如图①,求点P、C、D的坐标,并求过此三点的抛物线的函数关系式;
(2)若点E落在矩形纸片OABC的内部,如图②,设OP=x,AD=y,当x为何值时,y取得最大值?
(3)在(1)的情况下,过点P、C、D三点的抛物线上是否存在点Q,使△PDQ是以PD为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.
manfen5.com 满分网
查看答案
如图1,已知:抛物线y=manfen5.com 满分网x2+bx+c与x轴交于A、B两点,与y轴交于点C,经过B、C两点的直线是y=manfen5.com 满分网x-2,连接AC.
(1)B、C两点坐标分别为B(____________)、C(____________),抛物线的函数关系式为______
(2)判断△ABC的形状,并说明理由;
(3)若△ABC内部能否截出面积最大的矩形DEFC(顶点D、E、F、G在△ABC各边上)?若能,求出在AB边上的矩形顶点的坐标;若不能,请说明理由.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.