满分5 > 初中数学试题 >

(附加题:如果你的全卷得分不足150分,则本题的得分记入总分,但记入总分后全卷得...

(附加题:如果你的全卷得分不足150分,则本题的得分记入总分,但记入总分后全卷得分不得超过150分,超过按150分算.)
如图是二次函数y=-manfen5.com 满分网x2+2的图象在x轴上方的一部分,若这段图象与x轴所围成的阴影部分面积为S,试求出S取值的一个范围.

manfen5.com 满分网
由于阴影部分为抛物线和坐标轴构成,初中阶段没有公式可利用,只能利用“(1)S在△ABC面积与过A、B、C三点的⊙O半圆面积之间,(2)这段图象在图示半径为、2的两个半圆所夹的圆环内”的特点来进行估算其取值范围. 【解析】 方法一: 由题意,可知这段图象与x轴的交点为A(-2,0)、B(2,0),与y轴的交点为C(0,2).(2分) 显然,S在△ABC面积与过A、B、C三点的⊙O半圆面积之间.(3分) ∵S△ABC=4,(4分) S⊙O=2π,(5分) ∴4<S<2π.(6分) 说明:关于半圆⊙O的面积大于图示阴影部分面积的证明,如下(对学生不要求): 设P(x,y)在图示抛物线上,则 OP2=x2+y2=(4-2y)+y2=(y-1)2+3. ∵0≤y≤2, ∴3≤OP2≤4. ∴点P在半圆x2+y2=3、x2+y2=4所夹的圆环内,以及点P为内圆周点(,1)与外圆周点A、B、C. ∴半圆⊙O的面积大于图示阴影部分的面积. 由于内半圆的面积为S⊙O-, ∴<S<2π. 如果学生能得出此结论,可在上面结论基础上,加(4分). 方法二: 由题意,可知这段图象与x轴的交点为A(-2,0)、B(2,0),与y轴的交点为C(0,2).(2分) 显然,这段图象在图示半径为、2的两个半圆所夹的圆环内,以及过内半圆上点 P(,1)与半外圆上点A、B、C.(5分) ∴S在图示两个半圆面积之间.(7分) 即π•()2<S<π•22.(9分) ∴<S<2π.(10分)
复制答案
考点分析:
相关试题推荐
已知:在平面直角坐标系中,抛物线y=ax2-x+3(a≠0)交x轴于A、B两点,交y轴于点C,且对称轴为直线x=-2.
(1)求该抛物线的解析式及顶点D的坐标;
(2)若点P(0,t)是y轴上的一个动点,请进行如下探究:
探究一:如图1,设△PAD的面积为S,令W=t•S,当0<t<4时,W是否有最大值?如果有,求出W的最大值和此时t的值;如果没有,说明理由;
探究二:如图2,是否存在以P、A、D为顶点的三角形与Rt△AOC相似?如果存在,求点P的坐标;如果不存在,请说明理由.(参考资料:抛物线y=ax2+bx+c(a≠0)对称轴是直线x=manfen5.com 满分网
manfen5.com 满分网
查看答案
如图,已知正方形ABCD的边长与Rt△PQR的直角边PQ的长均为4cm,QR=8cm,AB与QR在同一条直线l上.开始时点Q与点B重合,让△PQR以1cm/s速度在直线l上运动,直至点R与点A重合为止,ts时△PQR与正方形ABCD重叠部分的面积记为Scm2
(1)当t=3s时,求S的值;
(2)求S与t之间的函数关系式,并写出自变量t的取值范围;
(3)写出t为何值时,重叠部分的面积S有最大值,最大值是多少?

manfen5.com 满分网 查看答案
如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.
(1)求出抛物线的解析式;
(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
(3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.

manfen5.com 满分网 查看答案
如图,已知抛物线y=ax2-2ax-b(a>0)与x轴的一个交点为B(-1,0),与y轴的负半轴交于点C,顶点为D.
(1)直接写出抛物线的对称轴,及抛物线与x轴的另一个交点A的坐标;
(2)以AD为直径的圆经过点C.
①求抛物线的解析式;
②点E在抛物线的对称轴上,点F在抛物线上,且以B,A,F,E四点为顶点的四边形为平行四边形,求点F的坐标.

manfen5.com 满分网 查看答案
如图,直线l与x轴、y轴分别交于点M(8,0),点N(0,6).点P从点N出发,以每秒1个单位长度的速度沿N⇒O方向运动,点Q从点O出发,以每秒2个单位长度的速度沿O→M的方向运动.已知点P、Q同时出发,当点Q达点M时,P、Q两manfen5.com 满分网点同时停止运动,设运动时间为t秒.
(1)设四边形MNPQ的面积为S,求S关于t的函数关系式,并写出t的取值范围.
(2)当t为何值时,PQ与l平行.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.