满分5 > 初中数学试题 >

如图,已知一个三角形纸片ABC,BC边的长为8,BC边上的高为6,∠B和∠C都为...

如图,已知一个三角形纸片ABC,BC边的长为8,BC边上的高为6,∠B和∠C都为锐角,M为AB一动点(点M与点A、B不重合),过点M作MN∥BC,交AC于点N,在△AMN中,设MN的长为x,MN上的高为h.
(1)请你用含x的代数式表示h;
(2)将△AMN沿MN折叠,使△AMN落在四边形BCNM所在平面,设点A落在平面的点为A1,△A1MN与四边形BCNM重叠部分的面积为y,当x为何值时,y最大,最大值为多少.

manfen5.com 满分网
(1)由于MN∥BC,故△AMN∽△ABC,由相似关系求解. (2)由于翻折后点A可能在△ABC的内部,也可能在BC边上,也可能在△ABC的外部,故需分类讨论.由于A′是动点,故重合的面积随A′位置的变化而变化. 【解析】 (1)∵MN∥BC ∴△AMN∽△ABC ∴ ∴. (2)∵△AMN≌△A1MN ∴△A1MN的边MN上的高为h ①当点A1落在四边形BCNM内或BC边上时 y=S△A1MN=MN•h=x•x=x2(0<x≤4) ②当A1落在四边形BCNM外时,如图(4<x<8) 设△A1EF的边EF上的高为h1 则h1=2h-6=x-6 ∵EF∥MN ∴△A1EF∽△A1MN ∵△A1MN∽△ABC ∴△A1EF∽△ABC ∴ ∵S△ABC=×6×8=24 ∴S△A1EF=()2×24=x2-12x+24 ∵y=S△A1MN-S△A1EF=x2-(x2-12x+24)=-x2+12x-24 所以y=-x2+12x-24(4<x<8) 综上所述 当0<x≤4时,y=x2,取x=4,ymax=6 当4<x<8时,y=-x2+12x-24,取x=,ymax=8 ∴当x=时,y值最大ymax=8.
复制答案
考点分析:
相关试题推荐
(附加题:如果你的全卷得分不足150分,则本题的得分记入总分,但记入总分后全卷得分不得超过150分,超过按150分算.)
如图是二次函数y=-manfen5.com 满分网x2+2的图象在x轴上方的一部分,若这段图象与x轴所围成的阴影部分面积为S,试求出S取值的一个范围.

manfen5.com 满分网 查看答案
已知:在平面直角坐标系中,抛物线y=ax2-x+3(a≠0)交x轴于A、B两点,交y轴于点C,且对称轴为直线x=-2.
(1)求该抛物线的解析式及顶点D的坐标;
(2)若点P(0,t)是y轴上的一个动点,请进行如下探究:
探究一:如图1,设△PAD的面积为S,令W=t•S,当0<t<4时,W是否有最大值?如果有,求出W的最大值和此时t的值;如果没有,说明理由;
探究二:如图2,是否存在以P、A、D为顶点的三角形与Rt△AOC相似?如果存在,求点P的坐标;如果不存在,请说明理由.(参考资料:抛物线y=ax2+bx+c(a≠0)对称轴是直线x=manfen5.com 满分网
manfen5.com 满分网
查看答案
如图,已知正方形ABCD的边长与Rt△PQR的直角边PQ的长均为4cm,QR=8cm,AB与QR在同一条直线l上.开始时点Q与点B重合,让△PQR以1cm/s速度在直线l上运动,直至点R与点A重合为止,ts时△PQR与正方形ABCD重叠部分的面积记为Scm2
(1)当t=3s时,求S的值;
(2)求S与t之间的函数关系式,并写出自变量t的取值范围;
(3)写出t为何值时,重叠部分的面积S有最大值,最大值是多少?

manfen5.com 满分网 查看答案
如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.
(1)求出抛物线的解析式;
(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
(3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.

manfen5.com 满分网 查看答案
如图,已知抛物线y=ax2-2ax-b(a>0)与x轴的一个交点为B(-1,0),与y轴的负半轴交于点C,顶点为D.
(1)直接写出抛物线的对称轴,及抛物线与x轴的另一个交点A的坐标;
(2)以AD为直径的圆经过点C.
①求抛物线的解析式;
②点E在抛物线的对称轴上,点F在抛物线上,且以B,A,F,E四点为顶点的四边形为平行四边形,求点F的坐标.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.