满分5 > 初中数学试题 >

已知直角坐标系中菱形ABCD的位置如图,C,D两点的坐标分别为(4,0),(0,...

已知直角坐标系中菱形ABCD的位置如图,C,D两点的坐标分别为(4,0),(0,3).现有两动点P,Q分别从A,C同时出发,点P沿线段AD向终点D运动,点Q沿折线CBA向终点A运动,设运动时间为t秒.
(1)填空:菱形ABCD的边长是______、面积是______、高BE的长是______
(2)探究下列问题:
①若点P的速度为每秒1个单位,点Q的速度为每秒2个单位.当点Q在线段BA上时,求△APQ的面积S关于t的函数关系式,以及S的最大值;
②若点P的速度为每秒1个单位,点Q的速度变为每秒k个单位,在运动过程中,任何时刻都有相应的k值,使得△APQ沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形.请探究当t=4秒时的情形,并求出k的值.

manfen5.com 满分网
(1)已知C,D的坐标,可在Rt△COD中用勾股定理求出CD的长即菱形的边长.菱形的面积就是4个Rt△COD的面积.BE的长可用菱形的面积和菱形的边长来求得. (2)①求△APQ的面积关键是求出底边AP上的高,过Q作QG⊥AD于G,那么QG就是△APQ的高,可根据相似三角形△AQG和△ABE来求出QG的长,然后根据三角形的面积计算方法即可得出关于S,t的函数关系式.然后根据得出的函数的性质即可得出S的最大值,以及对应的t的值. ②若要使△APQ沿它的一边翻折,翻折前后的两个三角形组成的四边形为菱形,那么△APQ需满足的条件为△APQ为等腰三角形.因此可分两种情况进行讨论: 第一种情况:当Q在CB上时(图2); 由于AP=4<BE,而BE是AD,BC间的最短的线段,因此只有一种情况即AQ=PQ,可仿照二的方法,过点Q1作Q1M⊥AP,垂足为点M,Q1M交AC于点F,可通过相似三角形△AMF∽△AOD∽△CQ1F,求出FM的长;而Q1M=BE,因此可求出Q1F的长,在直角三角形CQ1F中,可根据∠ACB的正切值求出CQ1的长,然后根据t=4即可求出k的值. 第二种情况:当Q在AB上时; 一,AP=AQ(图3),此时P,Q2关于x轴对称,已知了AP=t=4,因此Q运动的路程为CB+AB-AP=6,根据t=4即可求出k的值. 二,AP=PQ(图4),如果过P作PM⊥AB于B,那么△ANP∽△AEB,可根据相似得出的比例线段求出AN的长,也就能求出AQ3的长,然后根据一的方法求出k的值. 【解析】 (1)菱形ABCD的边长是5,面积是24,高BE的长是; (2)①由题意,得AP=t,AQ=10-2t. 如图1,过点Q作QG⊥AD,垂足为G,由QG∥BE得△AQG∽△ABE, ∴, ∴QG=, ∴S=AP•QG=-t2+t (≤t<5). ∵S=-(t-)2+6(≤t<5). ∴当t=时,S最大值为6. ②要使△APQ沿它的一边翻折,翻折前后的两个三角形组成的四边形为菱形,根据轴对称的性质,只需△APQ为等腰三角形即可. 当t=4秒时,∵点P的速度为每秒1个单位,∴AP=4. 以下分两种情况讨论: 第一种情况:当点Q在CB上时, ∵PQ≥BE>PA,∴只存在点Q1,使Q1A=Q1P. 如图2,过点Q1作Q1M⊥AP,垂足为点M,Q1M交AC于点F,则AM=AP=2. 由△AMF∽△AOD∽△CQ1F,得, ∴FM=, ∴. ∴CQ1==.则,∴. 第二种情况:当点Q在BA上时,存在两点Q2,Q3, 分别使AP=AQ2,PA=PQ3. ①若AP=AQ2,如图3,CB+BQ2=10-4=6. 则, ∴k=. ②若PA=PQ3,如图4,过点P作PN⊥AB,垂足为N, 由△ANP∽△AEB,得. ∵AE=, ∴AN=. ∴AQ3=2AN=, ∴BC+BQ3=10- 则. ∴. 综上所述,当t=4秒,以所得的等腰三角形APQ 沿底边翻折,翻折后得到菱形的k值为或或.
复制答案
考点分析:
相关试题推荐
如图,已知抛物线y=x2+bx+c经过A(1,0),B(0,2)两点,顶点为D.
(1)求抛物线的解析式;
(2)将△OAB绕点A顺时针旋转90°后,点B落到点C的位置,将抛物线沿y轴平移后经过点C,求平移后所得图象的函数关系式;
(3)设(2)中平移后,所得抛物线与y轴的交点为B1,顶点为D1,若点N在平移后的抛物线上,且满足△NBB1的面积是△NDD1面积的2倍,求点N的坐标.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,将一块腰长为manfen5.com 满分网的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(-1,0),点B在抛物线y=ax2+ax-2上
(1)点A的坐标为______,点B的坐标为______
(2)抛物线的关系式为______
(3)设(2)中抛物线的顶点为D,求△DBC的面积;
(4)将三角板ABC绕顶点A逆时针方向旋转90°,到达△AB′C″的位置.请判断点B′、C″是否在(2)中的抛物线上,并说明理由.

manfen5.com 满分网 查看答案
如图,已知点A(-4,8)和点B(2,n)在抛物线y=ax2上.
(1)求a的值及点B关于x轴对称点P的坐标,并在x轴上找一点Q,使得AQ+QB最短,求出点Q的坐标;
(2)平移抛物线y=ax2,记平移后点A的对应点为A′,点B的对应点为B′,点C(-2,0)和点D(-4,0)是x轴上的两个定点.
①当抛物线向左平移到某个位置时,A′C+CB′最短,求此时抛物线的函数解析式;
②当抛物线向左或向右平移时,是否存在某个位置,使四边形A′B′CD的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系xOy中,抛物线y=-manfen5.com 满分网x2+bx+c与x轴交于A(1,0)、B(5,0)两点.
(1)求抛物线的解析式和顶点C的坐标;
(2)设抛物线的对称轴与x轴交于点D,将∠DCB绕点C按顺时针方向旋转,角的两边CD和CB与x轴分别交于点P、Q,设旋转角为α(0°<α≤90°).
①当α等于多少度时,△CPQ是等腰三角形?
②设BP=t,AQ=s,求s与t之间的函数关系式.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,OB⊥OA,且OB=2OA,点A的坐标是(-1,2)
(1)求点B的坐标;
(2)求过点A、O、B的抛物线的表达式;
(3)连接AB,在(2)中的抛物线上求出点P,使得S△ABP=S△ABO

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.