满分5 > 初中数学试题 >

如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时...

如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设AB=x.
(1)求x的取值范围;
(2)若△ABC为直角三角形,求x的值;
(3)探究:△ABC的最大面积?

manfen5.com 满分网
(1)因为所求AB或x在△ABC中,所以可利用三角形三边之间的关系即两边之和大于第三边,两边之差小于第三边进行解答. (2)应该分情况讨论,因为不知道在三角形中哪一个是作为斜边存在的.所以有三种情况,即:①若AC为斜边,则1=x2+(3-x)2,即x2-3x+4=0,无解. ②若AB为斜边,则x2=(3-x)2+1,解得,满足1<x<2. ③若BC为斜边,则(3-x)2=1+x2,解得,满足1<x<2. ∴或. (3)在△ABC中,AB的值固定不变,即可视为底边不变,但是因为三角形形状不固定, 高在发生变化,所以造成面积不固定,需分情况进行讨论.具体分①若点D在线段AB上,②若点D在线段MA上两种情况. 【解析】 (1)∵在△ABC中,AC=1,AB=x,BC=3-x. ∴, 解得1<x<2; (2)①若AC为斜边,则1=x2+(3-x)2,即x2-3x+4=0,无解, ②若AB为斜边,则x2=(3-x)2+1,解得,满足1<x<2, ③若BC为斜边,则(3-x)2=1+x2,解得,满足1<x<2, ∴或; (3)在△ABC中,作CD⊥AB于D, 设CD=h,△ABC的面积为S,则, ①若点D在线段AB上, 则, ∴, 即, ∴x2(1-h2)=9x2-24x+16, 即x2h2=-8x2+24x-16. ∴S2=x2h2=-2x2+6x-4=-2(x-)2+(≤x<2), 当时(满足≤x<2)S2取最大值,从而S取最大值; ②若点D在线段MA上, 则, 同理可,得 S2=x2h2=-2x2+6x-4 =-2(x-)2+(1<x≤), 易知此时, 综合①②得,△ABC的最大面积为.
复制答案
考点分析:
相关试题推荐
如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度���为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.
(1)求NC,MC的长(用t的代数式表示);
(2)当t为何值时,四边形PCDQ构成平行四边形;
(3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由;
(4)探究:t为何值时,△PMC为等腰三角形.

manfen5.com 满分网 查看答案
如图,已知抛物线y=x2+bx+c经过矩形ABCD的两个顶点A、B,AB平行于x轴,对角线BD与抛物线交于点P,点A的坐标为(0,2),AB=4.
(1)求抛物线的解析式;
(2)若S△APO=manfen5.com 满分网,求矩形ABCD的面积.

manfen5.com 满分网 查看答案
如图,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点.
(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;
(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.

manfen5.com 满分网 查看答案
如图,已知二次函数y=x2-2x-1的图象的顶点为A.二次函数y=ax2+bx的图象与x轴交于原点O及另一点C,它的顶点B在函数y=x2-2x-1的图象的对称轴上.
(1)求点A与点C的坐标;
(2)当四边形AOBC为菱形时,求函数y=ax2+bx的关系式.

manfen5.com 满分网 查看答案
如图,抛物线y=-x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.
(1)直接写出A、B、C三点的坐标和抛物线的对称轴;
(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m;
①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?
②设△BCF的面积为S,求S与m的函数关系式.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.