我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;
(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;
(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.
考点分析:
相关试题推荐
如图,点E(-4,0),以点E为圆心,2为半径的圆与x轴交于A、B两点,抛物线y=
x
2+bx+c过点A和点B,与y轴交于C点.
(1)求抛物线的解析式;
(2)求出点C的坐标,并画出抛物线的大致图象;
(3)点Q(m,
)(m<0)在抛物线y=
x
2+bx+c的图象上,点P为此抛物线对称轴上的一个动点,求PQ+PB的最小值;
(4)CF是圆E的切线,点F是切点,在抛物线上是否存在一点M,使△COM的面积等于△COF的面积?若存在,请求出点M的坐标;若不存在,请说明理由.
查看答案
在直角坐标平面中,O为坐标原点,二次函数y=-x
2+(k-1)x+4的图象与y轴交于点A,与x轴的负半轴交于点B,且S
△OAB=6.
(1)求点A与点B的坐标;
(2)求此二次函数的解析式;
(3)如果点P在x轴上,且△ABP是等腰三角形,求点P的坐标.
查看答案
已知直线y=-x-1与x、y轴分别交于A、B曰两点,将其向右平移4个单位所得直线分别与x、y轴交于C、D两点.
(1)求C、D两点的坐标;
(2)求过A、C、D三点的抛物线的解析式;
(3)在(2)中所求抛物线的对称轴上,是否存在点P,使△PAB为等腰三角形?若存在,求出所有的点P的坐标;若不存在,请说明理由.
查看答案
如图,二次函数y=ax
2-5ax+4a(a≠0)的图象与x轴交于A、B两点(A在B的左侧),与y轴交于点C,点C关于抛物线对称轴的对称点为D,连接BD.
(1)求A、B两点的坐标;
(2)若AD⊥BC,垂足为P,求二次函数的表达式;
(3)在(2)的条件下,若直线x=m把△ABD的面积分为1:2的两部分,求m的值.
查看答案
已知点A(a,y
1)、B(2a,y
2)、C(3a,y
3)都在抛物线y=5x
2+12x上.
(1)求抛物线与x轴的交点坐标;
(2)当a=1时,求△ABC的面积;
(3)是否存在含有y
1,y
2,y
3,且与a无关的等式?如果存在,试给出一个,并加以证明;如果不存在,说明理由.
查看答案