满分5 > 初中数学试题 >

锐角△ABC中,BC=6,S△ABC=12,两动点M,N分别在边AB,AC上滑动...

锐角△ABC中,BC=6,S△ABC=12,两动点M,N分别在边AB,AC上滑动,且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的面积为y(y>0)
(1)△ABC中边BC上高AD=______
(2)当x=______时,PQ恰好落在边BC上(如图1);
(3)当PQ在△ABC外部时(如图2),求y关于x的函数关系式(注明x的取值范围),并求出x为何值时y最大,最大值是多少?
manfen5.com 满分网
(1)本题利用矩形的性质和相似三角形的性质,根据MN∥BC,得△AMN∽△ABC,求出△ABC中边BC上高AD的长度. (2)因为正方形的位置在变化,但是△AMN∽△ABC没有改变,利用相似三角形对应边上高的比等于相似比,得出等量关系,代入解析式, (3)用含x的式子表示矩形MEFN边长,从而求出面积的表达式. 【解析】 (1)由BC=6,S△ABC=12,得AD=4; (2)当PQ恰好落在边BC上时, ∵MN∥BC,∴△AMN∽△ABC. ∴, 即=,x=2.4(或); (3)设BC分别交MP,NQ于E,F,则四边形MEFN为矩形. 设ME=NF=h,AD交MN于G(如图2)GD=NF=h,AG=4-h. ∵MN∥BC, ∴△AMN∽△ABC. ∴,即, ∴. ∴y=MN•NF=x(-x+4)=-x2+4x(2.4<x<6), 配方得:y=-(x-3)2+6. ∴当x=3时,y有最大值,最大值是6.
复制答案
考点分析:
相关试题推荐
如图,抛物线L1:y=-x2-2x+3交x轴于A,B两点,交y轴于M点.将抛物线L1向右平移2个单位后得到抛物线L2,L2交x轴于C,D两点.
(1)求抛物线L2对应的函数表达式;
(2)抛物线L1或L2在x轴上方的部分是否存在点N,使以A,C,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由;
(3)若点P是抛物线L1上的一个动点(P不与点A,B重合),那么点P关于原点的对称点Q是否在抛物线L2上?请说明理由.

manfen5.com 满分网 查看答案
如图,直线y=manfen5.com 满分网x+b经过点B(-manfen5.com 满分网,2),且与x轴交于点A,将抛物线y=manfen5.com 满分网x2沿x轴作左右平移,记平移后的抛物线为C,其顶点为P.
(1)求∠BAO的度数;
(2)抛物线C与y轴交于点E,与直线AB交于两点,其中一个交点为F,当线段EF∥x轴时,求平移后的抛物线C对应的函数关系式;
(3)在抛物线y=manfen5.com 满分网x2平移过程中,将△PAB沿直线AB翻折得到△DAB,点D能否落在抛物线C上?如能,求出此时抛物线C顶点P的坐标;如不能,说明理由.
manfen5.com 满分网
查看答案
已知:如图,抛物线y=-x2+bx+c与x轴、y轴分别相交于点A(-1,0)、B(0,3)两点,其顶点为D.
(1)求该抛物线的解析式;
(2)若该抛物线与x轴的另一个交点为E.求四边形ABDE的面积;
(3)△AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.
(注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为manfen5.com 满分网

manfen5.com 满分网 查看答案
如图1,已知四边形OABC中的三个顶点坐标为O(0,0),A(0,n),C(m,0).动点P从点O出发依次沿线段OA,AB,BC向点C移动,设移动路程为z,△OPC的面积S随着z的变化而变化的图象如图2所示.m,n是常数,m>1,n>0.
(1)请你确定n的值和点B的坐标;
(2)当动点P是经过点O,C的抛物线y=ax2+bx+c的顶点,且在双曲线y=manfen5.com 满分网上时,求这时四边形OABC的面积.
manfen5.com 满分网
查看答案
如图,在Rt△ABC中,AB=AC,P是边AB(含端点)上的动点.过P作BC的垂线PR,R为垂足,∠PRB的平分线与AB相交于点S,在线段RS上存在一点T,若以线段PT为一边作正方形PTEF,其顶点E,F恰好分别在边BC,AC上.
(1)△ABC与△SBR是否相似,说明理由;
(2)请你探索线段TS与PA的长度之间的关系;
(3)设边AB=1,当P在边AB(含端点)上运动时,请你探索正方形PTEF的面积y的最小值和最大值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.