满分5 > 初中数学试题 >

已知抛物线y=ax2-2x+c与它的对称轴相交于点A(1,-4),与y轴交于C,...

已知抛物线y=ax2-2x+c与它的对称轴相交于点A(1,-4),与y轴交于C,与x轴正半轴交于B.
(1)求这条抛物线的函数关系式;
(2)设直线AC交x轴于D,P是线段AD上一动点(P点异于A,D),过P作PE∥x轴交直线AB于E,过E作EF⊥x轴于F,求当四边形OPEF的面积等于manfen5.com 满分网时点P的坐标.
manfen5.com 满分网
(1)由题意可知抛物线的顶点就是A点,因此可将A的坐标代入抛物线的解析式中,并根据对称轴x==1,联立方程组即可求出a,c的值,进而可得出抛物线的解析式. (2)四边形OPEF是个直角梯形,可先求出AD,AB所在直线的解析式,根据AD所在直线的解析式设出P的坐标,又由于PE∥x轴,P、E两点的纵坐标相同,然后根据AB所在直线的解析式得出E点的坐标,进而可求出F点的坐标.根据求出的P、E、F三点坐标,可得出梯形的上下底OF、EP的长以及直角梯形的高EF的长(即E点纵坐标的绝对值),根据梯形的面积公式即可得出关于梯形的面积与P点坐标的函数解析式,然后将S=代入函数中即可求出P点的坐标. 【解析】 (1)由题意,知点A(1,-4)是抛物线的顶点, ∴ ∴a=1,c=-3, ∴抛物线的函数关系式为y=x2-2x-3. (2)由(1)知,点C的坐标是(0,-3). 设直线AC的函数关系式为y=kx+b, 则 ∴b=-3,k=-1, ∴y=-x-3. 由y=x2-2x-3=0,得x1=-1,x2=3, ∴点B的坐标是(3,0). 设直线AB的函数关系式是y=mx+n, 则解得m=2,n=-6. ∴直线AB的函数关系式是y=2x-6. 设P点坐标为(xP,yP),则yP=-xP-3. ∵PE∥x轴, ∴E点的纵坐标也是-xP-3. 设E点坐标为(xE,yE), ∵点E在直线AB上, ∴-xP-3=2xE-6, ∴xE=. ∵EF⊥x轴, ∴F点的坐标为(,0), ∴PE=xE-xP=,OF=,EF=-(-xP-3)=xP+3, ∴S四边形OPEF=(PE+OF)•EF=(+)•(xP+3)=, 2xP2+3xP-2=0, ∴xP=-2,, 当y=0时,x=-3, 而-3<-2<1,, ∴P点坐标为和(-2,-1)
复制答案
考点分析:
相关试题推荐
如图1,抛物线y=ax2-3ax+b经过A(-1,0),C(3,2)两点,与y轴交于点D,与x轴交于另一点B.
(1)求此抛物线的解析式;
(2)若直线y=kx-1(k≠0)将四边形ABCD面积二等分,求k的值;
(3)如图2,过点E(1,-1)作EF⊥x轴于点F,将△AEF绕平面内某点旋转180°后得△MNQ(点M,N,Q分别与点A,E,F对应),使点M,N在抛物线上,求点M,N的坐标.
manfen5.com 满分网
查看答案
如图,已知半径为1的⊙O1与x轴交于A,B两点,OM为⊙O1的切线,切点为M,圆心O1的坐标为(2,0),二次函数y=-x2+bx+c的图象经过A,B两点.
(1)求二次函数的解析式;
(2)求切线OM的函数解析式;
(3)线段OM上存在一点P,使得以P,O,A为顶点的三角形与△OO1M相似.请问有几个符合条件的点P并分别求出它们的坐标.

manfen5.com 满分网 查看答案
已知:抛物线y=x2+(b-1)x+c经过点P(-1,-2b).
(1)求b+c的值;
(2)若b=3,求这条抛物线的顶点坐标;
(3)若b>3,过点P作直线PA⊥y轴,交y轴于点A,交抛物线于另一点B,且BP=2PA,求这条抛物线所对应的二次函数关系式.(提示:请画示意图思考)
查看答案
已知抛物线y=ax2+bx+c经过点A(5,0)、B(6,-6)和原点.
(1)求抛物线的函数关系式;
(2)若过点B的直线y=kx+b与抛物线交于点C(2,m),请求出△OBC的面积S的值;
(3)过点C作平行于x轴的直线交y轴于点D,在抛物线对称轴右侧位于直线DC下方的抛物线上,任取一点P,过点P作直线PF平行于y轴交x轴于点F,交直线DC于点E.直线PF与直线DC及两坐标轴围成矩形OFED,是否存在点P,使得△OCD与△CPE相似?若存在,求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知抛物线y=-manfen5.com 满分网(x+2)2+k与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,C点在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根.
(1)求A、B、C三点的坐标;
(2)在平面直角坐标系内画出抛物线的大致图象并标明顶点坐标;
(3)连AC、BC,若点E是线段AB上的一个动点(与A、B不重合),过E作EF∥AC交BC于F,连CE,设AE=m,△CEF的面积为S,求S与m的函数关系式,并写出自变量m的取值范围;
(4)在(3)的基础上说明S是否存在最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.