满分5 > 初中数学试题 >

已知二次函数y1=ax2+bx+c(a≠0)的图象经过三点(1,0),(-3,0...

已知二次函数y1=ax2+bx+c(a≠0)的图象经过三点(1,0),(-3,0),(0,-manfen5.com 满分网).
(1)求二次函数的解析式,并在给定的直角坐标系中作出这个函数的图象;
(2)若反比例函数y2=manfen5.com 满分网(x>0)的图象与二次函数y1=ax2+bx+c(a≠0)的图象在第一象限内交于点A(x,y),x落在两个相邻的正整数之间,请你观察图象,写出这两个相邻的正整数;
(3)若反比例函数y2=manfen5.com 满分网(x>0,k>0)的图象与二次函数y1=ax2+bx+c(a≠0)的图象在第一象限内的交点A,点A的横坐标x满足2<x<3,试求实数k的取值范围.
manfen5.com 满分网
(1)已知了抛物线与x轴的交点,可用交点式来设二次函数的解析式.然后将另一点的坐标代入即可求出函数的解析式. (2)可根据(1)的抛物线的解析式和反比例函数的解析式来联立方程组,求出的方程组的解就是两函数的交点坐标,然后找出第一象限内交点的坐标,即可得出符合条件的x的值,进而可写出所求的两个正整数. (3)点A的横坐标x满足2<x<3,可通过x=2,x=3两个点上抛物线与反比例函数的大小关系即可求出k的取值范围. 【解析】 (1)设抛物线解析式为y=a(x-1)(x+3), 将(0,-)代入,解得a=. ∴抛物线解析式为y=x2+x-. (2)正确的画出反比例函数在第一象限内的图象, 由图象可知,交点的横坐标x落在1和2之间,从而得出这两个相邻的正整数为1与2. (3)由函数图象或函数性质可知:当2<x<3时, 对y1=x2+x-,y1随着x增大而增大, 对y2=(k>0),y2随着x的增大而减小. 因为A(x,y)为二次函数图象与反比例函数图象的交点, 所以当x=2时,由反比例函数图象在二次函数上方得y2>y1, 即>×22+2-, 解得k>5. 同理,当x=3时,由二次函数图象在反比例上方得y1>y2, 即×32+3->, 解k<18, 所以K的取值范围为5<k<18.
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系中,抛物线经过A(-1,0),B(4,0),C(0,-4),⊙M是△ABC的外接圆,M为圆心.
(1)求抛物线的解析式;
(2)求阴影部分的面积;
(3)在x轴的正半轴上有一点P,作PQ⊥x轴交BC于Q,设PQ=k,△CPQ的面积为S,求S关于k的函数关系式,并求出S的最大值.

manfen5.com 满分网 查看答案
如图,在梯形ABCD中,AB∥CD,AB=7,CD=1,AD=BC=5.点M,N分别在边AD,BC上运动,并保持MN∥AB,ME⊥AB,NF⊥AB,垂足分别为E,F.
(1)求梯形ABCD的面积;
(2)求四边形MEFN面积的最大值;
(3)试判断四边形MEFN能否为正方形?若能,求出正方形MEFN的面积;若不能,请说明理由.

manfen5.com 满分网 查看答案
如图,圆B切y轴于原点O,过定点A(-manfen5.com 满分网,0)作圆B的切线交圆于点P,已知tan∠PAB=manfen5.com 满分网,抛物线C经过A,P两点.
(1)求圆B的半径.
(2)若抛物线C经过点B,求其解析式.
(3)设抛物线C交y轴于点M,若三角形APM为直角三角形,求点M的坐标.

manfen5.com 满分网 查看答案
两个直角边为6的全等的等腰直角三角形Rt△AOB和Rt△CED,按如图一所示的位置放置,点O与E重合.
(1)Rt△AOB固定不动,Rt△CED沿x轴以每秒2个单位长度的速度向右运动,当点E运动到与点B重合时停止,设运动x秒后,Rt△AOB和Rt△CED的重叠部分面积为y,求y与x之间的函数关系式;
(2)当Rt△CED以(1)中的速度和方向运动,运动时间x=2秒时,Rt△CED运动到如图二所示的位置,若抛物线y=manfen5.com 满分网x2+bx+c过点A,G,求抛物线的解析式;
(3)现有一动点P在(2)中的抛物线上运动,试问点P在运动过程中是否存在点P到x轴或y轴的距离为2的情况?若存在,请求出点P的坐标;若不存在,请说明理由.
manfen5.com 满分网
查看答案
如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A,B两点,开口向下的抛物线经过点A,B,且其顶点P在⊙C上.
(1)求∠ACB的大小;
(2)写出A,B两点的坐标;
(3)试确定此抛物线的解析式;
(4)在该抛物线上是否存在一点D,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.