满分5 > 初中数学试题 >

已知抛物线y=-ax2+2ax+b与x轴的一个交点为A(-1,0),与y轴的正半...

已知抛物线y=-ax2+2ax+b与x轴的一个交点为A(-1,0),与y轴的正半轴交于点C.
(1)直接写出抛物线的对称轴,及抛物线与x轴的另一个交点B的坐标;
(2)当点C在以AB为直径的⊙P上时,求抛物线的解析式;
(3)坐标平面内是否存在点M,使得以点M和(2)中抛物线上的三点A、B、C为顶点的四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.
(1)抛物线y=-ax2+2ax+b的对称轴,可以根据公式直接求出,抛物线与x轴的另一交点与A关于对称轴对称,因而交点就可以求出. (2)AB的长度可以求出,连接PC,在直角三角形OCP中,根据勾股定理就可以求出C点的坐标,把这点的坐标代入抛物线的解析式,就可以求出解析式. (3)本题应分AC或BC为对角线和以AB为对角线三种情况进行讨论,当以AC或BC为对角线时,点M在x轴上方,此时CM∥AB,且CM=AB.就可以求出点M的坐标.当以AB为对角线时,点M在x轴下方易证△AOC≌△BNM,可以求出点M的坐标. 【解析】 (1)对称轴是直线:x=1,点B的坐标是(3,0).(2分) 说明:每写对1个给(1分),“直线”两字没写不扣分. (2)如图,连接PC, ∵点A、B的坐标分别是A(-1,0)、B(3,0), ∴AB=4. ∴PC=AB=×4=2 在Rt△POC中, ∵OP=PA-OA=2-1=1, ∴OC=, ∴b=(3分) 当x=-1,y=0时,-a-2a+=0 ∴a=(4分) ∴y=-x2+x+.(5分) (3)存在.(6分)理由:如图,连接AC、BC. 设点M的坐标为M(x,y). ①当以AC或BC为对角线时,点M在x轴上方,此时CM∥AB,且CM=AB. 由(2)知,AB=4, ∴|x|=4,y=OC=. ∴x=±4. ∴点M的坐标为M(4,)或(-4,).(9分) 说明:少求一个点的坐标扣(1分). ②当以AB为对角线时,点M在x轴下方. 过M作MN⊥AB于N,则∠MNB=∠AOC=90度. ∵四边形AMBC是平行四边形, ∴AC=MB,且AC∥MB. ∴∠CAO=∠MBN. ∴△AOC≌△BNM. ∴BN=AO=1,MN=CO=. ∵OB=3, ∴0N=3-1=2. ∴点M的坐标为M(2,-).(12分) 综上所述,坐标平面内存在点M,使得以点A、B、C、M为顶点的四边形是平行四边形. 其坐标为M1(4,),M2(-4,),M3(2,-). 说明:①综上所述不写不扣分;②如果开头“存在”二字没写,但最后解答全部正确,不扣分
复制答案
考点分析:
相关试题推荐
已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.
(1)求A、B、C三点的坐标;
(2)求此抛物线的表达式;
(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
(4)在(3)的基础上试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,抛物线y=a(x+1)(x-5)与x轴的交点为M,N.直线y=kx+b与x轴交于P(-2,0),与y轴交于C.若A,B两点在直线y=kx+b上,且AO=BO=manfen5.com 满分网,AO⊥BO.D为线段MN的中点,OH为Rt△OPC斜边上的高.
(1)OH的长度等于______;k=______,b=______
(2)是否存在实数a,使得抛物线y=a(x+1)(x-5)上有一点E,满足以D,N,E为顶点的三角形与△AOB相似?若不存在,说明理由;若存在,求所有符合条件的抛物线的解析式,同时探索所求得的抛物线上是否还有符合条件的E点(简要说明理由);并进一步探索对符合条件的每一个E点,直线NE与直线AB的交点G是否总满足PB•PG<10manfen5.com 满分网,写出探索过程.

manfen5.com 满分网 查看答案
在平面直角坐标系中,矩形OABC的边OA在x轴的负半轴上,边OC在y轴的正半轴上,且OA=1,OC=2.将矩形OABC绕点O顺时针旋转90°,得到矩形DEFG(如图1).
(1)若抛物线y=-x2+bx+c经过点B和F,求此抛物线的解析式;
(2)将矩形DEFG以每秒1个单位长度的速度沿x轴负方向平移,平移t秒时,所成图形如图2所示.
①图2中,在0<t<1的条件下,连接BF,BF与(1)中所求抛物线的对称轴交于点Q,设矩形DEFG与矩形OABC重合部分的面积为S1,△AQF的面积为S2,试判断S1+S2的值是否发生变化?如果不变,求出其值;
②在0<t<3的条件下,P是x轴上一点,请你探究:是否存在t值,使以PB为斜边的Rt△PFB与Rt△AOC相似?若存在,直接写出满足条件t的值及点P的坐标;若不存在,请说明理由(利用图3分析探索).
manfen5.com 满分网
查看答案
如图,在矩形ABCD中,AB=9,AD=3manfen5.com 满分网,点P是边BC上的动点(点P不与点B,点C重合),过点P作直线PQ∥BD,交CD边于Q点,再把△PQC沿着动直线PQ对折,点C的对应点是R点,设CP的长度为x,△PQR与矩形ABCD重叠部分的面积为y.
manfen5.com 满分网
(1)求∠CQP的度数;
(2)当x取何值时,点R落在矩形ABCD的AB边上;
(3)①求y与x之间的函数关系式;
②当x取何值时,重叠部分的面积等于矩形面积的manfen5.com 满分网
查看答案
已知二次函数y1=ax2+bx+c(a≠0)的图象经过三点(1,0),(-3,0),(0,-manfen5.com 满分网).
(1)求二次函数的解析式,并在给定的直角坐标系中作出这个函数的图象;
(2)若反比例函数y2=manfen5.com 满分网(x>0)的图象与二次函数y1=ax2+bx+c(a≠0)的图象在第一象限内交于点A(x,y),x落在两个相邻的正整数之间,请你观察图象,写出这两个相邻的正整数;
(3)若反比例函数y2=manfen5.com 满分网(x>0,k>0)的图象与二次函数y1=ax2+bx+c(a≠0)的图象在第一象限内的交点A,点A的横坐标x满足2<x<3,试求实数k的取值范围.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.