满分5 > 初中数学试题 >

如图所示,在平面直角坐标系中,矩形ABOC的边BO在x轴的负半轴上,边OC在y轴...

如图所示,在平面直角坐标系中,矩形ABOC的边BO在x轴的负半轴上,边OC在y轴的正半轴上,且AB=1,OB=manfen5.com 满分网,矩形ABOC绕点O按顺时针方向旋转60°后得到矩形EFOD.点A的对应点为点E,点B的对应点为点F,点C的对应点为点D,抛物线y=ax2+bx+c过点A,E,D.
(1)判断点E是否在y轴上,并说明理由;
(2)求抛物线的函数表达式;
(3)在x轴的上方是否存在点P,点Q,使以点O,B,P,Q为顶点的平行四边形的面积是矩形ABOC面积的2倍,且点P在抛物线上?若存在,请求出点P,点Q的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)可连接OA,通过证∠AOE=60°,即与旋转角相同来得出OE在y轴上的结论. (2)已知了AB,OB的长即可求出A的坐标,在直角三角形OEF中,可用勾股定理求出OE的长,也就能求得E点的坐标,要想得出抛物线的解析式还少D点的坐标,可过D作x轴的垂线,通过构建直角三角形,根据OD的长和∠DOx的正弦和余弦值来求出D的坐标. 求出A、E、D三点坐标后即可用待定系数法求出抛物线的解析式. (3)可先求出矩形的面积,进而可得出平行四边形OBPQ的面积.由于平行四边形中OB边的长是定值,因此可根据平行四边形的面积求出P点的纵坐标(由于P点在x轴上方,因此P的纵坐标为正数),然后将P点的纵坐标代入抛物线中可求出P点的坐标.求出P点的坐标后,将P点分别向左、向右平移OB个单位即可得出Q点的坐标,由此可得出符合条件的两个P点坐标和四个Q点坐标. 【解析】 (1)点E在y轴上 理由如下: 连接AO,如图所示,在Rt△ABO中,∵AB=1,BO=, ∴AO=2∴sin∠AOB=,∴∠AOB=30° 由题意可知:∠AOE=60°∴∠BOE=∠AOB+∠AOE=30°+60°=90° ∵点B在x轴上,∴点E在y轴上. (2)过点D作DM⊥x轴于点M, ∵OD=1,∠DOM=30° ∴在Rt△DOM中,DM=,OM= ∵点D在第一象限, ∴点D的坐标为 由(1)知EO=AO=2,点E在y轴的正半轴上 ∴点E的坐标为(0,2) ∴点A的坐标为(-,1) ∵抛物线y=ax2+bx+c经过点E, ∴c=2 由题意,将A(-,1),D(,)代入y=ax2+bx+2中, 得 解得 ∴所求抛物线表达式为:y=-x2-x+2 (3)存在符合条件的点P,点Q. 理由如下:∵矩形ABOC的面积=AB•BO= ∴以O,B,P,Q为顶点的平行四边形面积为. 由题意可知OB为此平行四边形一边, 又∵OB= ∴OB边上的高为2 依题意设点P的坐标为(m,2) ∵点P在抛物线y=-x2-x+2上 ∴-m2-m+2=2 解得,m1=0,m2=- ∴P1(0,2),P2(-,2) ∵以O,B,P,Q为顶点的四边形是平行四边形, ∴PQ∥OB,PQ=OB=, ∴当点P1的坐标为(0,2)时,点Q的坐标分别为Q1(-,2),Q2(,2); 当点P2的坐标为(-,2)时,点Q的坐标分别为Q3(-,2),Q4(,2).
复制答案
考点分析:
相关试题推荐
已知抛物线y=-ax2+2ax+b与x轴的一个交点为A(-1,0),与y轴的正半轴交于点C.
(1)直接写出抛物线的对称轴,及抛物线与x轴的另一个交点B的坐标;
(2)当点C在以AB为直径的⊙P上时,求抛物线的解析式;
(3)坐标平面内是否存在点M,使得以点M和(2)中抛物线上的三点A、B、C为顶点的四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.
查看答案
已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.
(1)求A、B、C三点的坐标;
(2)求此抛物线的表达式;
(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
(4)在(3)的基础上试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,抛物线y=a(x+1)(x-5)与x轴的交点为M,N.直线y=kx+b与x轴交于P(-2,0),与y轴交于C.若A,B两点在直线y=kx+b上,且AO=BO=manfen5.com 满分网,AO⊥BO.D为线段MN的中点,OH为Rt△OPC斜边上的高.
(1)OH的长度等于______;k=______,b=______
(2)是否存在实数a,使得抛物线y=a(x+1)(x-5)上有一点E,满足以D,N,E为顶点的三角形与△AOB相似?若不存在,说明理由;若存在,求所有符合条件的抛物线的解析式,同时探索所求得的抛物线上是否还有符合条件的E点(简要说明理由);并进一步探索对符合条件的每一个E点,直线NE与直线AB的交点G是否总满足PB•PG<10manfen5.com 满分网,写出探索过程.

manfen5.com 满分网 查看答案
在平面直角坐标系中,矩形OABC的边OA在x轴的负半轴上,边OC在y轴的正半轴上,且OA=1,OC=2.将矩形OABC绕点O顺时针旋转90°,得到矩形DEFG(如图1).
(1)若抛物线y=-x2+bx+c经过点B和F,求此抛物线的解析式;
(2)将矩形DEFG以每秒1个单位长度的速度沿x轴负方向平移,平移t秒时,所成图形如图2所示.
①图2中,在0<t<1的条件下,连接BF,BF与(1)中所求抛物线的对称轴交于点Q,设矩形DEFG与矩形OABC重合部分的面积为S1,△AQF的面积为S2,试判断S1+S2的值是否发生变化?如果不变,求出其值;
②在0<t<3的条件下,P是x轴上一点,请你探究:是否存在t值,使以PB为斜边的Rt△PFB与Rt△AOC相似?若存在,直接写出满足条件t的值及点P的坐标;若不存在,请说明理由(利用图3分析探索).
manfen5.com 满分网
查看答案
如图,在矩形ABCD中,AB=9,AD=3manfen5.com 满分网,点P是边BC上的动点(点P不与点B,点C重合),过点P作直线PQ∥BD,交CD边于Q点,再把△PQC沿着动直线PQ对折,点C的对应点是R点,设CP的长度为x,△PQR与矩形ABCD重叠部分的面积为y.
manfen5.com 满分网
(1)求∠CQP的度数;
(2)当x取何值时,点R落在矩形ABCD的AB边上;
(3)①求y与x之间的函数关系式;
②当x取何值时,重叠部分的面积等于矩形面积的manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.