满分5 > 初中数学试题 >

已知抛物线y=ax2+bx+c的顶点A在x轴上,与y轴的交点为B(0,1),且b...

已知抛物线y=ax2+bx+c的顶点A在x轴上,与y轴的交点为B(0,1),且b=-4ac.
(1)求抛物线的解析式;
(2)在抛物线上是否存在一点C,使以BC为直径的圆经过抛物线的顶点A?若不存在,说明理由;若存在,求出点C的坐标,并求出此时圆的圆心点P的坐标;
(3)根据(2)小题的结论,你发现B、P、C三点的横坐标之间、纵坐标之间分别有何关系?

manfen5.com 满分网
(1)已知抛物线过B点,由b=-4ac可求顶点坐标,代入解出系数,从而求出抛物线表达式; (2)假设存在,设出C点,作CD⊥x轴于D,连接AB、AC,可证三角形相似,根据相似比例,求出C点,再作辅助线,利用圆及梯形OBCD的性质求出P点坐标; (3)由第二问结论,设出B,P,C点代入公式就可找到关系. 【解析】 (1)将B(0,1)代入y=ax2+bx+c中,得c=1. 又∵b=-4ac,顶点A(-,0), ∴-==2c=2. ∴A(2,0).(2分) 将A点坐标代入抛物线解析式,得4a+2b+1=0, ∴ 解得a=,b=-1, 故抛物线的解析式为y=x2-x+1.(4分) (2)假设符合题意的点C存在,其坐标为C(x,y),作CD⊥x轴于D,连接AB、AC. ∵A在以BC为直径的圆上, ∴∠BAC=90°. ∴△AOB∽△CDA, ∴OB•CD=OA•AD, 即1•y=2(x-2), ∴y=2x-4,(6分) 由, 解得x1=10,x2=2. ∴符合题意的点C存在,且坐标为(10,16),或(2,0),(8分) ∵P为圆心, ∴P为BC中点, 当点C坐标为(10,16)时,取OD中点P1,连PP1,则PP1为梯形OBCD中位线, ∴PP1=(OB+CD)=. ∵D(10,0), ∴P1(5,0), ∴P2(5,). 当点C坐标为(2,0)时,取OA中点P2,连PP2,则PP2为△OAB的中位线. ∴PP2=OB=, ∵A(2,0), ∴P2(1,0), ∴P(1,). 故点P坐标为(5,),或(1,).(10分) (3)设B、P、C三点的坐标为B(x1,y1),P(x2,y2),C(x3,y3), 由(2)可知: .(12分)
复制答案
考点分析:
相关试题推荐
如图,等腰直角三角形纸片ABC中,AC=BC=4,∠ACB=90°,直角边AC在x轴上,B点在第二象限,A(1,0),AB交y轴于E,将纸片过E点折叠使BE与EA所在直线重合,得到折痕EF(F在x轴上),再展开还原沿EF剪开得到四边形BCFE,然后把四边形BCFE从E点开始沿射线EA平移,至B点到达A点停止.设平移时间为t(s),移动速度为每秒1个单位长度,平移中四边形BCFE与△AEF重叠的面积为S.
(1)求折痕EF的长;
(2)是否存在某一时刻t使平移中直角顶点C经过抛物线y=x2+4x+3的顶点?若存在,求出t值;若不存在,请说明理由;
(3)直接写出S与t的函数关系式及自变量t的取值范围.

manfen5.com 满分网 查看答案
已知:如图,Rt△AOB的两直角边OA、OB分别在x轴的正半轴和y轴的负半轴上,C为OA上一点且OC=OB,抛物线y=(x-2)(x-m)-(p-2)(p-m)(m、p为常数且m+2≥2p>0)经过A、C两点.
(1)用m、p分别表示OA、OC的长;
(2)当m、p满足什么关系时,△AOB的面积最大.

manfen5.com 满分网 查看答案
如图,在直角坐标系中,以点M(3,0)为圆心,以6为半径的圆分别交x轴的正半轴于点A,交x轴的负半轴交于点B,交y轴的正半轴于点C,过点C的直线交x轴的负半轴于点D(-9,0)
(1)求A,C两点的坐标;
(2)求证:直线CD是⊙M的切线;
(3)若抛物线y=x2+bx+c经过M,A两点,求此抛物线的解析式;
(4)连接AC,若(3)中抛物线的对称轴分别与直线CD交于点E,与AC交于点F.如果点P是抛物线上的动点,是否存在这样的点P,使得S△PAM:S△CEF=manfen5.com 满分网:3?若存在,请求出此时点P的坐标;若不存在,请说明理由.(注意:本题中的结果均保留根号)

manfen5.com 满分网 查看答案
直线y=-manfen5.com 满分网x+6分别与x轴、y轴交于点A、B,经过A、B两点的抛物线与x轴的另一交点为C,且其对称轴为x=3.
(1)求这条抛物线对应的函数关系式;
(2)设D(x,y)是抛物线在第一象限内的一个点,点D到直线AB的距离为d、试写出d关于x的函数关系式,这个函数是否有最大值或最小值?如果有,并求这个值和此时点D的坐标;如果没有,说明理由.

manfen5.com 满分网 查看答案
如图1,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.
(1)在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标;
(2)如图2,若AE上有一动点P(不与A,E重合)自A点沿AE方向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t秒(0<t<5),过P点作ED的平行线交AD于点M,过点M作AE平行线交DE于点N.求四边形PMNE的面积S与时间t之间的函数关系式;当t取何值时,s有最大值,最大值是多少?
(3)在(2)的条件下,当t为何值时,以A,M,E为顶点的三角形为等腰三角形,并求出相应的时刻点M的坐标?
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.