满分5 > 初中数学试题 >

已知:抛物线y=ax2+bx+c(a≠0),顶点C(1,-3),与x轴交于A,B...

已知:抛物线y=ax2+bx+c(a≠0),顶点C(1,-3),与x轴交于A,B两点,A(-1,0).
(1)求这条抛物线的解析式;
(2)如图,以AB为直径作圆,与抛物线交于点D,与抛物线对称轴交于点E,依次连接A,D,B,E,点P为线段AB上一个动点(P与A,B两点不重合),过点P作PM⊥AE于M,PN⊥DB于N,请判断manfen5.com 满分网是否为定值?若是,请求出此定值;若不是,请说明理由;
(3)在(2)的条件下,若点S是线段EP上一点,过点S作FG⊥EP,FG分别与边AE,BE相交于点F,G(F与A,E不重合,G与E,B不重合),请判断manfen5.com 满分网是否成立?若成立,请给出证明;若不成立,请说明理由.

manfen5.com 满分网
(1)已知抛物线的顶点坐标就可以利用顶点式求函数的解析式. (2)AB是圆的直径,因而∠ADB=∠AEB=90°,得到PN∥AD,得到=,同理=,这样就可以求出的值. (3)易证△AEB为等腰直角三角形,过点P作PH⊥BE与H,四边形PHEM是矩形,易证△APM∽△PBH,则,再证明△MEP∽△EGF,则因而可证. 【解析】 (1)设抛物线的解析式为y=a(x-1)2-3(1分) 将A(-1,0)代入:0=a(-1-1)2-3, 解得a=(2分) 所以,抛物线的解析式为y=(x-1)2-3,即y=x2-x-(3分) (2)是定值,=1(4分) ∵AB为直径, ∴∠AEB=90°, ∵PM⊥AE, ∴PM∥BE, ∴△APM∽△ABE, 所以① 同理:②(5分) ①+②:(6分) (3)∵直线EC为抛物线对称轴, ∴EC垂直平分AB, ∴EA=EB, ∵∠AEB=90°, ∴△AEB为等腰直角三角形, ∴∠EAB=∠EBA=45°(7分) 如图,过点P作PH⊥BE于H, 由已知及作法可知,四边形PHEM是矩形. ∴PH=ME且PH∥ME. 在△APM和△PBH中, ∵∠AMP=∠PHB=90°,∠EAB=∠BPH=45°, ∴PH=BH,且△APM∽△PBH, ∴, ∴①(8分) 在△MEP和△EGF中, ∵PE⊥FG, ∴∠FGE+∠SEG=90°, ∵∠MEP+∠SEG=90°, ∴∠FGE=∠MEP, ∵∠PME=∠FEG=90°, ∴△MEP∽△EGF, ∴② 由①、②知:(9分)(本题若按分类证明,只要合理,可给满分)
复制答案
考点分析:
相关试题推荐
△ABC中,∠C=90°,∠A=60°,AC=2cm.长为1cm的线段MN在△ABC的边AB上沿AB方向以1cm/s的速度向点B运动(运动前点M与点A重合).过M,N分别作AB的垂线交直角边于P,Q两点,线段MN运动的时间为ts.
(1)若△AMP的面积为y,写出y与t的函数关系式(写出自变量t的取值范围);
(2)线段MN运动过程中,四边形MNQP有可能成为矩形吗?若有可能,求出此时t的值;若不可能,说明理由;
(3)t为何值时,以C,P,Q为顶点的三角形与△ABC相似?

manfen5.com 满分网 查看答案
已知抛物线y=ax2+bx+c的顶点A在x轴上,与y轴的交点为B(0,1),且b=-4ac.
(1)求抛物线的解析式;
(2)在抛物线上是否存在一点C,使以BC为直径的圆经过抛物线的顶点A?若不存在,说明理由;若存在,求出点C的坐标,并求出此时圆的圆心点P的坐标;
(3)根据(2)小题的结论,你发现B、P、C三点的横坐标之间、纵坐标之间分别有何关系?

manfen5.com 满分网 查看答案
如图,等腰直角三角形纸片ABC中,AC=BC=4,∠ACB=90°,直角边AC在x轴上,B点在第二象限,A(1,0),AB交y轴于E,将纸片过E点折叠使BE与EA所在直线重合,得到折痕EF(F在x轴上),再展开还原沿EF剪开得到四边形BCFE,然后把四边形BCFE从E点开始沿射线EA平移,至B点到达A点停止.设平移时间为t(s),移动速度为每秒1个单位长度,平移中四边形BCFE与△AEF重叠的面积为S.
(1)求折痕EF的长;
(2)是否存在某一时刻t使平移中直角顶点C经过抛物线y=x2+4x+3的顶点?若存在,求出t值;若不存在,请说明理由;
(3)直接写出S与t的函数关系式及自变量t的取值范围.

manfen5.com 满分网 查看答案
已知:如图,Rt△AOB的两直角边OA、OB分别在x轴的正半轴和y轴的负半轴上,C为OA上一点且OC=OB,抛物线y=(x-2)(x-m)-(p-2)(p-m)(m、p为常数且m+2≥2p>0)经过A、C两点.
(1)用m、p分别表示OA、OC的长;
(2)当m、p满足什么关系时,△AOB的面积最大.

manfen5.com 满分网 查看答案
如图,在直角坐标系中,以点M(3,0)为圆心,以6为半径的圆分别交x轴的正半轴于点A,交x轴的负半轴交于点B,交y轴的正半轴于点C,过点C的直线交x轴的负半轴于点D(-9,0)
(1)求A,C两点的坐标;
(2)求证:直线CD是⊙M的切线;
(3)若抛物线y=x2+bx+c经过M,A两点,求此抛物线的解析式;
(4)连接AC,若(3)中抛物线的对称轴分别与直线CD交于点E,与AC交于点F.如果点P是抛物线上的动点,是否存在这样的点P,使得S△PAM:S△CEF=manfen5.com 满分网:3?若存在,请求出此时点P的坐标;若不存在,请说明理由.(注意:本题中的结果均保留根号)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.