满分5 > 初中数学试题 >

如图1,B是长度为1的线段AE上任意一点,在AE的同一侧分别作正方形ABCD和长...

如图1,B是长度为1的线段AE上任意一点,在AE的同一侧分别作正方形ABCD和长方形BEFG,且EF=2BE.
manfen5.com 满分网
(1)点B在何处时,正方形ABCD的面积与长方形BEFG的面积和最小,最小值为多少?
(2)若点C与点G重合,M为AB中点,N为EF中点,MN与BC交于点H(如图2所示),将△OMA沿直线DM,△MNE沿直线MN分别向矩形AEFD内折叠,求四边形DMNF未被两个折叠三角形覆盖的图形面积.
(1)根据正方形的性质和折叠的特点可用含x的式子表示出线段的长度,用含x的式子表示出正方形ABCD的面积与长方形BEFG的面积和利用二次函数的最值问题求出,当x=,即BE=,S最小=. (2)根据(1)可知BE=时,AB=AD=,所以四边形DMNF未被两个折叠三角形覆盖的图形面积为:-4×××=. 【解析】 (1)设BE=x,则AB=1-x,EF=2x,根据题意得: S=(x-1)2+2x2=3x2-2x+1, 当x=,即BE=,S最小=. (2)当BE=时,AB=AD=, 所以四边形DMNF未被两个折叠三角形覆盖的图形面积为:-4×××=.
复制答案
考点分析:
相关试题推荐
如图,已知二次函数图象的顶点坐标为C(1,1),直线y=kx+m的图象与该二次函数的图象交于A、B两点,其中A点坐标为(manfen5.com 满分网manfen5.com 满分网),B点在y轴上,直线与x轴的交点为F,P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于E点.
(1)求k,m的值及这个二次函数的解析式;
(2)设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;
(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在点P,使得以点P、E、D为顶点的三角形与△BOF相似?若存在,请求出P点的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图所示,在平面直角坐标系中,⊙M经过原点O,且与x轴、y轴分别相交于A(-6,0),B(0,-8)两点.
(1)请求出直线AB的函数表达式;
(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在⊙M上,开口向下,且经过点B,求此抛物线的函数表达式;
(3)设(2)中的抛物线交x轴于D,E两点,在抛物线上是否存在点P,使得S△PDE=manfen5.com 满分网S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图所示,在平面直角坐标系中,二次函数y=a(x-2)2-1图象的顶点为P,与x轴交点为A、B,与y轴交点为C,连接BP并延长交y轴于点D.
(1)写出点P的坐标;
(2)连接AP,如果△APB为等腰直角三角形,求a的值及点C、D的坐标;
(3)在(2)的条件下,连接BC、AC、AD,点E(0,b)在线段CD(端点C、D除外)上,将△BCD绕点E逆时针方向旋转90°,得到一个新三角形.设该三角形与△ACD重叠部分的面积为S,根据不同情况,分别用含b的代数式表示S,选择其中一种情况给出解答过程,其它情况直接写出结果;判断当b为何值时,重叠部分的面积最大写出最大值.

manfen5.com 满分网 查看答案
如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8).
(1)求抛物线的解析式及其顶点D的坐标;
(2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得点P到直线CD的距离等于点P到原点O的距离?如果存在,求出点P的坐标;如果不存在,请说明理由;
(3)过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,矩形OABC的顶点A(0,3),C(-1,0),将矩形OABC绕原点O顺时针方向旋转90度,得矩形OA′B′C′矩形设直线BB’与x轴交于点M,与y轴交于点N,抛物线经过点C,M,N点.
解答下列问题:
(1)设直线BB′表示的函数解析式为y=mx+n,求m,n;
(2)求抛物线表示的二次函数的解析式;
(3)在抛物线上求出使S△PB‘C‘=S矩形OABC的所有点P的坐标.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.