满分5 > 初中数学试题 >

如图,点D,E分别是矩形OABC中AB和BC边上的中点,点B的坐标为(6,4) ...

如图,点D,E分别是矩形OABC中AB和BC边上的中点,点B的坐标为(6,4)
(1)写出A,C,E,D四点的坐标;并判断点O到直线DE的距离是否等于线段的OE长;
(2)动点F在线段DE上,FG⊥x轴于G,FH⊥y轴于H,求矩形面积最大时点F的坐标(利用图1解答);
(3)我们给出如下定义:分别过抛物向上的两点(不在x轴上)作x轴的垂线,如果以这两点及垂足为顶点的矩形在这条抛物线与x轴围成的封闭图形内部,则称这个矩形是这条抛物线的内接矩形,请你理解上述定义,解答下面的问题:若矩形OABC是某个抛物线的周长最大的内接矩形,求这个抛物线的解析式(利用图2解答).
manfen5.com 满分网
(1)根据矩形的性质和B点的坐标,易求出A、C、D、E的坐标,易知:CE=BE=3,BD=2,很明显△CDE和△BDE不相似,因此∠CED≠∠BDE,也就是说∠CED+∠BED≠90°,OE与DE不垂直,因此O到ED的距离不等于OE的长; (2)矩形的面积实际上是F点横坐标与纵坐标的乘积,因此求出直线DE的解析式是解题的关键.可根据(1)得出的D、E的坐标求出直线DE的解析式,进而可根据矩形的面积公式得出矩形的面积S与F横坐标的函数关系式,根据函数的性质即可求出S的最大值及对应的F的坐标; (3)本题可先根据B、C的坐标设出抛物线的解析式(使抛物线的待定系数只有二次项一个),假设矩形SPQR是抛物线的任意内接矩形(R、S在抛物线上),可根据抛物线的解析式设出R、S的坐标,即可表示出RS和RP的长,然后根据矩形周长的计算方法可得出关于矩形周长和R、S其中一点横坐标的函数关系式,题中给出了抛物线内接矩形的周长最大时,x应该为6,因此得出的函数的对称轴即为x=6,由此可确定抛物线的二次项系数的值. 【解析】 (1)A(6,0),D(6,2),E(3,4),C(0,4) 答:不等于 理由:连接OE,OD,ED. ∵OE2=25,ED2=13,OD2=40 ∴OE2+ED2≠OD2 ∴OE与DE不垂直,点O到直线ED的距离不是线段OE的长. (证明方法很多,①△ODE的面积为9,求出DE边上的高h=与OE=5的长比较; ②在直线DE与x,y轴围成的三角形中,利用等积法,求点O到直线DE的距离与OE比较; ③证明△ODE和△EBD不相似,则∠OED≠90°; ④延长ED交x轴于P,在Rt△DAP中,tan∠EPO=2:3,而在△QEP中,OE:EP≠2:3,则∠OED≠90°.) (2)解法一: 延长ED交x轴于点H.由已知得△EBD≌△HAD. ∴AH=EB=3 ∴HO=9设OG=m,则HG=9-m. 由△HAD∽△HGF可得=即= ∴GF=(9-m)=-m+6 S矩形OGFH=OG•GF=m(-m+6)=-m2+6m(3≤m≤6) 当m=-=-=时,S矩形OGFH最大 GF=-×+6=3 ∴点F(,3). 解法二:设直线ED的解析式为y=kx+b,由图象经过E,D两点可得: . 解得. ∴y=-x+6 设点F的坐标为F(m,n), 由点F在线段ED上可得:n=-m+6 ∵FG⊥x轴于点G,FH⊥y轴于点H, ∴FG=n,FH=m ∴S矩形OGFH=mn=m(-m+6)=-m2+6m(3≤m≤6) 当m=-当m=-=-=时,S矩形OGFH最大 GF=-×+6=3 ∴点F(,3) (3)设这个抛物线的解析式为y=ax2+bx+c(a≠0)由内接矩形的定义可知: 此抛物线经过B,C两点,对称轴x=-=3,且c=4 ∴这个抛物线的解析式为y=ax2-6ax+4 如图,设矩形SPQR是这个抛物线的任一内接矩形,且点R(x,y)由对称性可知点S(6-x,y) ∴RS=2x-6,RQ=y 又∵点R在这个抛物线上, ∴y=ax2-6ax+4 ∴C矩形SPQR=2(2x-6+y) =2(2x-6+ax2-6ax+4)=2ax2+(-4-12a)x-4 已知可知当x=6时,C矩形SPQR取得最大值. ∴-4-12a=a ∴a=- 因此,所求抛物线的解析式为y=-x2+2x+4.
复制答案
考点分析:
相关试题推荐
(1)如图,A1,A2,A3是抛物线y=manfen5.com 满分网x2图象上的三点,若A1,A2,A3三点的横坐标从左至右依次为1,2,3.求△A1A2A3的面积.
(2)若将(1)问中的抛物线改为y=manfen5.com 满分网x2-manfen5.com 满分网x+2和y=ax2+bx+c(a>0),其他条件不变,请分别直接写出两种情况下△A1A2A3的面积.
(3)现有一抛物线组:y1=manfen5.com 满分网x2-manfen5.com 满分网x;y2=manfen5.com 满分网x2-manfen5.com 满分网x;y3=manfen5.com 满分网x2-manfen5.com 满分网x;y4=manfen5.com 满分网x2-manfen5.com 满分网x;y5=manfen5.com 满分网x2-manfen5.com 满分网x;…依据变化规律,请你写出抛物线组第n个式子yn的函数解析式;现在x轴上有三点A(1,0),B(2,0),C(3,0).经过A,B,C向x轴作垂线,分别交抛物线组y1,y2,y3,…,yn于A1,B1,C1;A2,B2,C2;A3,B3,C3;…;An,Bn,Cn.记manfen5.com 满分网为S1manfen5.com 满分网为S2,…,manfen5.com 满分网为Sn,试求S1+S2+S3+…+S10的值.
(4)在(3)问条件下,当n>10时有Sn-10+Sn-9+Sn-8+…Sn的值不小于manfen5.com 满分网,请探求此条件下正整数n是否存在最大值?若存在,请求出此值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.
(1)直接写出点E、F的坐标;
(2)设顶点为F的抛物线交y轴正半轴于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;
(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.
manfen5.com 满分网
查看答案
manfen5.com 满分网如图,已知抛物线y=x2+bx+c经过点(1,-5)和(-2,4)
(1)求这条抛物线的解析式;
(2)设此抛物线与直线y=x相交于点A,B(点B在点A的右侧),平行于y轴的直线x=m(0<m<manfen5.com 满分网+1)与抛物线交于点M,与直线y=x交于点N,交x轴于点P,求线段MN的长(用含m的代数式表示);
(3)在条件(2)的情况下,连接OM、BM,是否存在m的值,使△BOM的面积S最大?若存在,请求出m的值;若不存在,请说明理由.
查看答案
已知一元二次方程x2-4x-5=0的两个实数根为x1、x2,且x1<x2.若x1、x2分别是抛物线y=-x2+bx+c与x轴的两个交点A、B的横坐标(如下图所示).
(1)求该抛物线的解析式;
(2)设(1)中的抛物线与y轴的交点为C,抛物线的顶点为D,请直接写出点C、D的坐标并求出四边形ABDC的面积;
(3)是否存在直线y=kx(k>0)与线段BD相交且把四边形ABDC的面积分为相等的两部分?若存在,求出k的值;若不存在,请说明理由.
[注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(manfen5.com 满分网)].

manfen5.com 满分网 查看答案
在矩形ABCD中,点E是AD边上一点,连接BE,且∠ABE=30°,BE=DE,连接BD.点P从点E出发沿射线ED运动,过点P作PQ∥BD交直线BE于点Q.
(1)当点P在线段ED上时(如图1),求证:BE=PD+manfen5.com 满分网PQ;
(2)若BC=6,设PQ长为x,以P、Q、D三点为顶点所构成的三角形面积为y,求y与x的函数关系式(不要求写出自变量x的取值范围);
(3)在②的条件下,当点P运动到线段ED的中点时,连接QC,过点P作PF⊥QC,垂足为F,PF交对角线BD于点G(如图2),求线段PG的长.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.