满分5 > 初中数学试题 >

在平面直角坐标系中给定以下五个点A(-3,0),B(-1,4),C(0,3),D...

在平面直角坐标系中给定以下五个点A(-3,0),B(-1,4),C(0,3),D(manfen5.com 满分网manfen5.com 满分网),E(1,0).
(1)请从五点中任选三点,求一条以平行于y轴的直线为对称轴的抛物线的解析式;
(2)求该抛物线的顶点坐标和对称轴,并画出草图;
(3)已知点F(-1,manfen5.com 满分网)在抛物线的对称轴上,直线y=manfen5.com 满分网过点G(-1,manfen5.com 满分网)且垂直于对称轴.验证:以E(1,0)为圆心,EF为半径的圆与直线y=manfen5.com 满分网相切.请你进一步验证,以抛物线上的点D(manfen5.com 满分网manfen5.com 满分网)为圆心DF为半径的圆也与直线y=manfen5.com 满分网相切.由此你能猜想到怎样的结论.

manfen5.com 满分网
首先用待定系数法求得抛物线的解析式,利用抛物线的公式求得抛物线的顶点坐标及对称轴,构造直角三角形,利用勾股定理求得线段EF、DF的长,再与点E、D到直线的距离比较,得到点E和点D分别到点F的距离等于各自到直线的距离. 最后可猜想:以抛物线上任意一点P为圆心,以PF为半径的圆与直线y=相切. 【解析】 (1)设抛物线的解析式为y=ax2+bx+c, 且过点A(-3,0),C(0,3),E(1,0), 由(0,3)在y=ax2+bx+cH. 则c=3. 得方程组, 解得a=-1,b=-2. ∴抛物线的解析式为y=-x2-2x+3. (2)由y=-x2-2x+3=-(x+1)2+4, 得顶点坐标为(-1,4),对称轴为x=-1. (3)①连接EF,过点E作直线y=的垂线,垂足为N, 则EN=HG=. 在Rt△FHE中,HE=2,HF=, ∴EF=, ∴EF=EN, ∴以E点为圆心,EF为半径的⊙E与直线y=相切. ②连接DF过点D作直线的垂线,垂足为M.过点D作DQ⊥GH垂足Q, 则DM=QG=. 在Rt△FQD中,QD=,QF==2.FD=. ∴以D点为圆心DF为半径的⊙D与直线y=相切. ③以抛物线上任意一点P为圆心,以PF为半径的圆与直线y=相切. 说明:解答题只提供了一种答案,如有其他解法只要正确,可参照本评分标准按步骤赋分.
复制答案
考点分析:
相关试题推荐
如图,将△AOB置于平面直角坐标系中,其中点O为坐标原点,点A的坐标为(3,0),∠ABO=60度.
(1)若△AOB的外接圆与y轴交于点D,求D点坐标.
(2)若点C的坐标为(-1,0),试猜想过D,C的直线与△AOB的外接圆的位置关系,并加以说明.
(3)二次函数的图象经过点O和A且顶点在圆上,求此函数的解析式.

manfen5.com 满分网 查看答案
如图1,抛物线y=x2的顶点为P,A、B是抛物线上两点,AB∥x轴,四边形ABCD为矩形,CD边经过点P,AB=2AD.
(1)求矩形ABCD的面积;
(2)如图2,若将抛物线“y=x2”,改为抛物线“y=x2+bx+c”,其他条件不变,请猜想矩形ABCD的面积;
(3)若将抛物线“y=x2+bx+c”改为抛物线“y=ax2+bx+c”,其他条件不变,请猜想矩形ABCD的面积.(用a、b、c表示,并直接写出答案)
附加题:若将题中“y=x2”改为“y=ax2+bx+c”,“AB=2AD”条件不要,其他条件不变,探索矩形ABCD面积为常数时,矩形ABCD需要满足什么条件并说明理由.

manfen5.com 满分网 查看答案
如图,△ABC的高AD为3,BC为4,直线EF∥BC,交线段AB于E,交线段AC于F,交AD于G,以EF为斜边作等腰直角三角形PEF(点P与点A在直线EF的异侧),设EF为x,△PEF与四边形BCEF重合部分的面积为y.
(1)求线段AG(用x表示);
(2)求y与x的函数关系式,并求x的取值范围.

manfen5.com 满分网 查看答案
如图,点D,E分别是矩形OABC中AB和BC边上的中点,点B的坐标为(6,4)
(1)写出A,C,E,D四点的坐标;并判断点O到直线DE的距离是否等于线段的OE长;
(2)动点F在线段DE上,FG⊥x轴于G,FH⊥y轴于H,求矩形面积最大时点F的坐标(利用图1解答);
(3)我们给出如下定义:分别过抛物向上的两点(不在x轴上)作x轴的垂线,如果以这两点及垂足为顶点的矩形在这条抛物线与x轴围成的封闭图形内部,则称这个矩形是这条抛物线的内接矩形,请你理解上述定义,解答下面的问题:若矩形OABC是某个抛物线的周长最大的内接矩形,求这个抛物线的解析式(利用图2解答).
manfen5.com 满分网
查看答案
(1)如图,A1,A2,A3是抛物线y=manfen5.com 满分网x2图象上的三点,若A1,A2,A3三点的横坐标从左至右依次为1,2,3.求△A1A2A3的面积.
(2)若将(1)问中的抛物线改为y=manfen5.com 满分网x2-manfen5.com 满分网x+2和y=ax2+bx+c(a>0),其他条件不变,请分别直接写出两种情况下△A1A2A3的面积.
(3)现有一抛物线组:y1=manfen5.com 满分网x2-manfen5.com 满分网x;y2=manfen5.com 满分网x2-manfen5.com 满分网x;y3=manfen5.com 满分网x2-manfen5.com 满分网x;y4=manfen5.com 满分网x2-manfen5.com 满分网x;y5=manfen5.com 满分网x2-manfen5.com 满分网x;…依据变化规律,请你写出抛物线组第n个式子yn的函数解析式;现在x轴上有三点A(1,0),B(2,0),C(3,0).经过A,B,C向x轴作垂线,分别交抛物线组y1,y2,y3,…,yn于A1,B1,C1;A2,B2,C2;A3,B3,C3;…;An,Bn,Cn.记manfen5.com 满分网为S1manfen5.com 满分网为S2,…,manfen5.com 满分网为Sn,试求S1+S2+S3+…+S10的值.
(4)在(3)问条件下,当n>10时有Sn-10+Sn-9+Sn-8+…Sn的值不小于manfen5.com 满分网,请探求此条件下正整数n是否存在最大值?若存在,请求出此值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.