满分5 > 初中数学试题 >

在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A,B两点(点A在点...

在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点B的坐标为(3,0),将直线y=kx沿y轴向上平移3个单位长度后恰好经过B,C两点.
(1)求直线BC及抛物线的解析式;
(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标;
(3)连接CD,求∠OCA与∠OCD两角和的度数.

manfen5.com 满分网
(1)依题意设直线BC的解析式为y=kx+3,把B点坐标代入解析式求出直线BC的表达式.然后又已知抛物线y=x2+bx+c过点B,C,代入求出解析式. (2)由y=x2-4x+3求出点D,A的坐标.得出三角形OBC是等腰直角三角形求出∠OBC,CB的值.过A点作AE⊥BC于点E,求出BE,CE的值.证明△AEC∽△AFP求出PF可得点P在抛物线的对称轴,求出点P的坐标. (3)本题要靠辅助线的帮助.作点A(1,0)关于y轴的对称点A',则A'(-1,0),求出A'C=AC,由勾股定理可得CD,A'D的值.得出△A'DC是等腰三角形后可推出∠OCA+∠OCD=45度. 【解析】 (1)∵y=kx沿y轴向上平移3个单位长度后经过y轴上的点C, ∴C(0,3). 设直线BC的解析式为y=kx+3. ∵B(3,0)在直线BC上, ∴3k+3=0. 解得k=-1. ∴直线BC的解析式为y=-x+3.(1分) ∵抛物线y=x2+bx+c过点B,C, ∴ 解得, ∴抛物线的解析式为y=x2-4x+3.(2分) (2)由y=x2-4x+3. 可得D(2,-1),A(1,0). ∴OB=3,OC=3,OA=1,AB=2. 可得△OBC是等腰直角三角形, ∴∠OBC=45°,CB=3. 如图1,设抛物线对称轴与x轴交于点F, ∴AF=AB=1. 过点A作AE⊥BC于点E. ∴∠AEB=90度. 可得BE=AE=,CE=2. 在△AEC与△AFP中,∠AEC=∠AFP=90°,∠ACE=∠APF, ∴△AEC∽△AFP. ∴,. 解得PF=2.∵点P在抛物线的对称轴上, ∴点P的坐标为(2,2)或(2,-2).(5分) (3)解法一: 如图2,作点A(1,0)关于y轴的对称点A',则A'(-1,0). 连接A'C,A'D, 可得A'C=AC=,∠OCA'=∠OCA. 由勾股定理可得CD2=20,A'D2=10. 又∵A'C2=10, ∴A'D2+A'C2=CD2. ∴△A'DC是等腰直角三角形,∠CA'D=90°, ∴∠DCA'=45度. ∴∠OCA'+∠OCD=45度. ∴∠OCA+∠OCD=45度. 即∠OCA与∠OCD两角和的度数为45度.(7分) 解法二: 如图3,连接BD. 同解法一可得CD=,AC=. 在Rt△DBF中,∠DFB=90°,BF=DF=1, ∴DB=. 在△CBD和△COA中,,,. ∴. ∴△CBD∽△COA. ∴∠BCD=∠OCA. ∵∠OCB=45°, ∴∠OCA+∠OCD=45度. 即∠OCA与∠OCD两角和的度数为45度.(9分)
复制答案
考点分析:
相关试题推荐
如图所示,已知两点A(-1,0),B(4,0),以AB为直径的半圆P交y轴于点C.
(1)求经过A、B、C三点的抛物线的解析式;
(2)设弦AC的垂直平分线交OC于D,连接AD并延长交半圆P于点E,manfen5.com 满分网manfen5.com 满分网相等吗?请证明你的结论;
(3)设点M为x轴负半轴上一点,OM=manfen5.com 满分网AE,是否存在过点M的直线,使该直线与(1)中所得的抛物线的两个交点到y轴的距离相等?若存在,求出这条直线对应函数的解析式;若不存在.请说明理由.

manfen5.com 满分网 查看答案
如图(1),已知在△ABC中,AB=AC=10,AD为底边BC上的高,且AD=6.将△ACD沿箭头所示的方向平移,得到△A′CD′.如图(2),A′D′交AB于E,A′C分别交AB、AD于G、F.以D′D为直径作⊙O,设BD′的长为x,⊙O的面积为y.
(1)求y与x之间的函数关系式及自变量x的取值范围;
(2)连接EF,求EF与⊙O相切时x的值;
(3)设四边形ED′DF的面积为S,试求S关于x的函数表达式,并求x为何值时,S的值最大,最大值是多少?
manfen5.com 满分网
查看答案
已知,如图,直线l经过A(4,0)和B(0,4)两点,它与抛物线y=ax2在第一象限内相交于点P,又知△AOP的面积为4,求a的值.

manfen5.com 满分网 查看答案
如图,已知四边形ABCD是矩形,且MO=MD=4,MC=3.
(1)求直线BM的解析式;
(2)求过A、M、B三点的抛物线的解析式;
(3)在(2)中的抛物线上是否存在点P,使△PMB构成以BM为直角边的直角三角形?若没有,请说明理由;若有,则求出一个符合条件的P点的坐标.

manfen5.com 满分网 查看答案
如图,抛物线y=x2+4x与x轴分别相交于点B、O,它的顶点为A,连接AB,把AB所在的直线沿y轴向上平移,使它经过原点O,得到直线l,设P是直线l上有一动点.
(1)求点A的坐标;
(2)以点A、B、O、P为顶点的四边形中,有菱形、等腰梯形、直角梯形,请分别直接写出这些特殊四边形的顶点P的坐标;
(3)设以点A、B、O、P为顶点的四边形的面积为S,点P的横坐标为x,当manfen5.com 满分网≤S≤manfen5.com 满分网时,求x的取值范围.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.