满分5 > 初中数学试题 >

已知抛物线y=kx2-2kx+9-k(k为常数,k≠0),且当x>0时,y>1....

已知抛物线y=kx2-2kx+9-k(k为常数,k≠0),且当x>0时,y>1.
(1)求抛物线的顶点坐标;
(2)求k的取值范围;
(3)过动点P(0,n)作直线l⊥y轴,点O为坐标原点.
①当直线l与抛物线只有一个公共点时,求n关于k的函数关系式;
②当直线l与抛物线相交于A、B两点时,是否存在实数n,使得不论k在其取值范围内取任意值时,△AOB的面积为定值?如果存在,求出n的值;如果不存在,说明理由.
(1)由顶点坐标公式(,)可得答案; (2)依题意可得,解之可得k的取值范围; (3)①当直线l与抛物线只有一个公共点时,有直线过顶点,可得n关于k的函数关系式,进而可作出判断; ②当直线l与抛物线相交于A、B两点时,正方程式可得其对于任意的k值,方程式恒成立,故抛物线的图象过定点,因此△AOB的面积为定值. 【解析】 (1)∵,,(2分) ∴抛物线的顶点坐标为(1,-2k+9).(3分) (2)依题意可得,(5分) 解得0<k<4.即k的取值范围是0<k<4.(6分) (3)①当直线l与抛物线只有一个公共点时,即直线l过抛物线的顶点, 由(1)得n关于k的函数关系式为n=-2k+9(0<k<4).(7分) ②结论:存在实数n,使得△AOB的面积为定值.(8分) 理由:n=kx2-2kx+9-k,整理,得(x2-2x-1)k+(9-n)=0. ∵对于任意的k值,上式恒成立, ∴, 解得,(9分) ∴当n=9时,对k在其取值范围内的任意值,抛物线的图象都通过点和点, 即△AOB的底,高为9, 因此△AOB的面积为定值.(10分)
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,抛物线y=x2-2x-3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.
(1)求A、B两点的坐标及直线AC的函数表达式;
(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;
(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.
查看答案
已知抛物线y=ax2+bx+c的对称轴是经过点(2,0)且与y轴平行的直线,抛物线与x轴相交于点A(1,0),与y轴相交于点B(0,3),其在对称轴左侧的图象如图所示.
(1)求抛物线所对应的函数关系式,并写出抛物线的顶点坐标;
(2)画出抛物线在对称轴右侧的图象,并根据图象,写出当x为何值时,y<0.

manfen5.com 满分网 查看答案
如图,正方形ABCD的边长为3a,两动点E、F分别从顶点B、C同时开始以相同速度沿BC、CD运动,与△BCF相应的△EGH在运动过程中始终保持△EGH≌△BCF,对应边EG=BC,B、E、C、G在一直线上.
(1)若BE=a,求DH的长;
(2)当E点在BC边上的什么位置时,△DHE的面积取得最小值?并求该三角形面积的最小值.
manfen5.com 满分网
查看答案
已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.
(1)求点C的坐标;
(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;
(3)若抛物线的对称轴与OB交于点D,点P为线段DB上一点,过P作y轴的平行线,交抛物线于点M.问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为manfen5.com 满分网,对称轴公式为x=-manfen5.com 满分网

manfen5.com 满分网 查看答案
如图,已知抛物线P:y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线P上部分点的横坐标对应的纵坐标如下:
x-3-212
ymanfen5.com 满分网-4manfen5.com 满分网
(1)求A、B、C三点的坐标;
(2)若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;
(3)当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k•DF,若点M不在抛物线P上,求k的取值范围.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.