已知:直线y=x+6交x、y轴于A、C两点,经过A、O两点的抛物线y=ax
2+bx(a<0)的顶点在直线AC上.
(1)求A、C两点的坐标;
(2)求出抛物线的函数关系式;
(3)以B点为圆心,以AB为半径作⊙B,将⊙B沿x轴翻折得到⊙D,试判断直线AC与⊙D的位置关系,并求出BD的长;
(4)若E为⊙B劣弧OC上一动点,连接AE、OE,问在抛物线上是否存在一点M,使∠MOA:∠AEO=2:3?若存在,试求出点M的坐标;若不存在,试说明理由.
考点分析:
相关试题推荐
已知:如图,抛物线y=ax
2+bx+c经过A(1,0)、B(5,0)、C(0,5)三点.
(1)求抛物线的函数关系式;
(2)若过点C的直线y=kx+b与抛物线相交于点E(4,m),请求出△CBE的面积S的值;
(3)在抛物线上求一点P
,使得△ABP
为等腰三角形,并写出P
点的坐标;
附加:(4)除(3)中所求的P
点外,在抛物线上是否还存在其它的点P使得△ABP为等腰三角形?若存在,请求出一共有几个满足条件的点P(要求简要说明理由,但不证明);若不存在这样的点P,请说明理由.
查看答案
抛物线y=ax
2+bx+c交x轴于A,B两点,交y轴于点C,对称轴为直线x=1,已知:A(-1,0),C(0,-3).
(1)求抛物线y=ax
2+bx+c的解析式;
(2)求△AOC和△BOC的面积的比;
(3)在对称轴是否存在一个点P,使△PAC的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案
如图,在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2a,CD=a,BC=2,四边形BEFG是矩形,点E、F分别在腰BC、AD上,点G在AB上.设FG=x,矩形BEFG的面积为y.
(1)求y关于x的函数关系式;
(2)当矩形BEFG的面积等于梯形ABCD的面积的一半时,求x的值;
(3)当∠DAB=30°时,矩形BEFG是否能成为正方形?若能,求其边长;若不能,请说明理由.
查看答案
已知抛物线y=kx
2-2kx+9-k(k为常数,k≠0),且当x>0时,y>1.
(1)求抛物线的顶点坐标;
(2)求k的取值范围;
(3)过动点P(0,n)作直线l⊥y轴,点O为坐标原点.
①当直线l与抛物线只有一个公共点时,求n关于k的函数关系式;
②当直线l与抛物线相交于A、B两点时,是否存在实数n,使得不论k在其取值范围内取任意值时,△AOB的面积为定值?如果存在,求出n的值;如果不存在,说明理由.
查看答案
如图,抛物线y=x
2-2x-3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.
(1)求A、B两点的坐标及直线AC的函数表达式;
(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;
(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.
查看答案