满分5 > 初中数学试题 >

如图,矩形纸片ABCD中,AB=4,BC=4,将矩形沿对角线AC剪开,解答以下问...

如图,矩形纸片ABCD中,AB=4,BC=4manfen5.com 满分网,将矩形沿对角线AC剪开,解答以下问题:
(1)在△ACD绕点C顺时针旋转60°,△A1CD1是旋转后的新位置(图A),求此AA1的距离;
(2)将△ACD沿对角线AC向下翻折(点A、点C位置不动,△ACD和△ABC落在同一平面内),△ACD2是翻折后的新位置(图B),求此时BD2的距离;
(3)将△ACD沿CB向左平移,设平移的距离为x(0≤x≤4manfen5.com 满分网),△A2C1D3是平移后的新位置(图C),若△ABC与△A2C1D3重叠部分的面积为y,求y关于x的函数关系式.
manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网

manfen5.com 满分网
(1)由勾股定理可得AC长度,由于AC=A1C,因为∠ACA1=60°,所以△ACA1为等边三角形,那么AA1=AC (2)易得BD2是等腰梯形的上底,那么可过梯形上底两个端点作下底的垂线,得到两个全等的直角三角形,把所求线段转移到下底求解. (3)易得阴影部分为平行四边形,那么可根据相应的三角函数求得阴影部分的底与高. 【解析】 (1)在Rt△ABC中,由勾股定理得,, 在△ACA1中,∵AC=A1C,∠ACA1=60°, ∴△ACA1为等边三角形. ∴AA1=AC=8.(4分) (2)如图2所示,过B,D2分别作BE⊥AC于E,D2F⊥AC于F,则BE∥D2F, 在Rt△ABC中,∵AB=4,BC=4,tan∠BAC===, ∴∠BAC=60°. 在Rt△ABE中,AB=4,∠BAE=60°,∠ABE=30°, ∴AE=AB=2,BE=2. 同理,CF=2,, ∴EF=AC-AE-CF=8-2-2=4, ∵, ∴四边形BEFD2是平行四边形, ∴BD2=EF=4.(8分) (3)如图3所示,AA2=x,x,, ∵平移的概念及矩形的性质得AG∥C1H,GC1∥AH, ∴四边形AGC1H是平行四边形, ∴y=S平行四边形AGC1H=AG•AD3=(0≤x≤4).(12分)
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上.
(1)求m的值及这个二次函数的关系式;
(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;
(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四形?若存在,请求出此时P点的坐标;若不存在,请说明理由.
查看答案
已知:直线y=x+6交x、y轴于A、C两点,经过A、O两点的抛物线y=ax2+bx(a<0)的顶点在直线AC上.
(1)求A、C两点的坐标;
(2)求出抛物线的函数关系式;
(3)以B点为圆心,以AB为半径作⊙B,将⊙B沿x轴翻折得到⊙D,试判断直线AC与⊙D的位置关系,并求出BD的长;
(4)若E为⊙B劣弧OC上一动点,连接AE、OE,问在抛物线上是否存在一点M,使∠MOA:∠AEO=2:3?若存在,试求出点M的坐标;若不存在,试说明理由.

manfen5.com 满分网 查看答案
已知:如图,抛物线y=ax2+bx+c经过A(1,0)、B(5,0)、C(0,5)三点.
(1)求抛物线的函数关系式;
(2)若过点C的直线y=kx+b与抛物线相交于点E(4,m),请求出△CBE的面积S的值;
(3)在抛物线上求一点P,使得△ABP为等腰三角形,并写出P点的坐标;
附加:(4)除(3)中所求的P点外,在抛物线上是否还存在其它的点P使得△ABP为等腰三角形?若存在,请求出一共有几个满足条件的点P(要求简要说明理由,但不证明);若不存在这样的点P,请说明理由.

manfen5.com 满分网 查看答案
抛物线y=ax2+bx+c交x轴于A,B两点,交y轴于点C,对称轴为直线x=1,已知:A(-1,0),C(0,-3).
(1)求抛物线y=ax2+bx+c的解析式;
(2)求△AOC和△BOC的面积的比;
(3)在对称轴是否存在一个点P,使△PAC的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2a,CD=a,BC=2,四边形BEFG是矩形,点E、F分别在腰BC、AD上,点G在AB上.设FG=x,矩形BEFG的面积为y.
(1)求y关于x的函数关系式;
(2)当矩形BEFG的面积等于梯形ABCD的面积的一半时,求x的值;
(3)当∠DAB=30°时,矩形BEFG是否能成为正方形?若能,求其边长;若不能,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.