已知:如图,二次函数y=x
2+(2k-1)x+k+1的图象与x轴相交于O、A两点.
(1)求这个二次函数的解析式;
(2)在这条抛物线的对称轴右边的图象上有一点B,使锐角△AOB的面积等于3.求点B的坐标;
(3)对于(2)中的点B,在抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由.
考点分析:
相关试题推荐
如图1,点A是直线y=kx(k>0,且k为常数)上一动点,以A为顶点的抛物线y=(x-h)
2+m交直线y=kx于另一点E,交y轴于点F,抛物线的对称轴交x轴于点B,交直线EF于点C.(点A,E,F两两不重合)
(1)请写出h与m之间的关系;(用含的k式子表示)
(2)当点A运动到使EF与x轴平行时(如图2),求线段AC与OF的比值;
(3)当点A运动到使点F的位置最低时(如图3),求线段AC与OF的比值.
查看答案
已知平面直角坐标系中,A、B、C三点的坐标分别是(0,2)、(0,-2),(4,-2).
(1)请在给出的直角坐标系xOy中画出△ABC,设AC交X轴于点D,连接BD,证明:OD平分∠ADB;
(2)请在X轴上找出点E,使四边形AOCE为平行四边形,写出E点坐标,并证明四边形AOCE是平行四边形;
(3)设经过点B,且以CE所在直线为对称轴的抛物线的顶点为F,求直线FA的解析式.
查看答案
如图,矩形纸片ABCD中,AB=4,BC=4
,将矩形沿对角线AC剪开,解答以下问题:
(1)在△ACD绕点C顺时针旋转60°,△A
1CD
1是旋转后的新位置(图A),求此AA
1的距离;
(2)将△ACD沿对角线AC向下翻折(点A、点C位置不动,△ACD和△ABC落在同一平面内),△ACD
2是翻折后的新位置(图B),求此时BD
2的距离;
(3)将△ACD沿CB向左平移,设平移的距离为x(0≤x≤4
),△A
2C
1D
3是平移后的新位置(图C),若△ABC与△A
2C
1D
3重叠部分的面积为y,求y关于x的函数关系式.
查看答案
如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上.
(1)求m的值及这个二次函数的关系式;
(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;
(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四形?若存在,请求出此时P点的坐标;若不存在,请说明理由.
查看答案
已知:直线y=x+6交x、y轴于A、C两点,经过A、O两点的抛物线y=ax
2+bx(a<0)的顶点在直线AC上.
(1)求A、C两点的坐标;
(2)求出抛物线的函数关系式;
(3)以B点为圆心,以AB为半径作⊙B,将⊙B沿x轴翻折得到⊙D,试判断直线AC与⊙D的位置关系,并求出BD的长;
(4)若E为⊙B劣弧OC上一动点,连接AE、OE,问在抛物线上是否存在一点M,使∠MOA:∠AEO=2:3?若存在,试求出点M的坐标;若不存在,试说明理由.
查看答案