满分5 > 初中数学试题 >

如图,在平面直角坐标系中,以点C(0,4)为圆心,半径为4的圆交y轴正半轴于点A...

如图,在平面直角坐标系中,以点C(0,4)为圆心,半径为4的圆交y轴正半轴于点A,AB是⊙C的切线.动点P从点A开始沿AB方向以每秒1个单位长度的速度运动,点Q从O点开始沿x轴正方向以每秒4个单位长度的速度运动,且动点P、Q从点A和点O同时出发,设运动时间为t(秒).
(1)当t=1时,得到P1、Q1两点,求经过A、P1、Q1三点的抛物线解析式及对称轴l;
(2)当t为何值时,直线PQ与⊙C相切并写出此时点P和点Q的坐标;
(3)在(2)的条件下,抛物线对称轴l上存在一点N,使NP+NQ最小,求出点N的坐标并说明理由.

manfen5.com 满分网
(1)先求出t=1时,AP和OQ的长,即可求得P1,Q1的坐标,然后用待定系数法即可得出抛物线的解析式.进而可求出对称轴l的解析式. (2)当直线PQ与圆C相切时,连接CP,CQ则有Rt△CMP∽Rt△QMC(M为PG与圆的切点),因此可设当t=a秒时,PQ与圆相切,然后用a表示出AP,OQ的长即PM,QM的长(切线长定理).由此可求出a的值. (3)本题的关键是确定N的位置,先找出与P点关于直线l对称的点P′的坐标,连接P′Q,那么P′Q与直线l的交点即为所求的N点,可先求出直线P′Q的解析式,进而可求出N点的坐标. 【解析】 (1)由题意得A、P1、Q1的坐标分别为A(0,8)、P1(1,8)、Q1(4,0)(1分) 设所求抛物线解析式为y=ax2+bx+c 则 ∴a=-,b=,c=8 ∴所求抛物线为y=-x2++8 对称轴为直线l:x=; (2)设t=a时,PQ与⊙C相切于点M 连接CP、CM、CQ,则PA=PM=a,QO=QM=4a 又∵CP、CQ分别平分∠APQ和∠OQP, 而∠APQ+∠OQP=180° ∴∠PCQ=90° ∴PC⊥CQ ∴Rt△CMP∽Rt△QMC ∴即 ∴a=±2 由于时间a只能取正数, 所以a=2 即当运动时间t=2时,PQ与⊙C相切 此时:P(2,8),Q(8,0); (3)点P关于直线l的对称点为P(-1,8) 则直线PQ的解析式为:y= 当x=时,y=-×+==. 因此N点的坐标为(,).
复制答案
考点分析:
相关试题推荐
如图,已知△OAB的顶点A(3,0),B(0,1),O是坐标原点.将△OAB绕点O按逆时针旋转90°得到△ODC.
(1)写出C,D两点的坐标;
(2)求过C,D,A三点的抛物线的解析式,并求此抛物线的顶点M的坐标;
(3)在线段AB上是否存在点N,使得NA=NM?若存在,请求出点N的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,坐标原点为O,A点坐标为(-4,0),B点坐标为(1,0),以AB的中点P为圆心,AB为直径作⊙P与y轴的负半轴交于点C.
(1)求经过A、B、C三点的抛物线对应的函数表达式;
(2)设M为(1)中抛物线的顶点,求直线MC对应的函数表达式;
(3)试说明直线MC与⊙P的位置关系,并证明你的结论.

manfen5.com 满分网 查看答案
如图,已知抛物线y=a(x-1)2-manfen5.com 满分网与x轴交于A、B两点(点A在左边),且过点D(5,-3),顶点为M,直线MD交x轴于点F.
(1)求a的值;
(2)以AB为直径画⊙P,问:点D在⊙P上吗?为什么?
(3)直线MD与⊙P存在怎样的位置关系?请说明理由.

manfen5.com 满分网 查看答案
如图,矩形EFGH的边EF=6cm,EH=3cm,在▱ABCD中,BC=10cm,AB=5cm,sin∠ABC=manfen5.com 满分网,点E、F、B、C在同一直线上,且FB=1cm,矩形从F点开始以1cm/s的速度沿直线FC向右运动,当边GF所在直线到达D点时即停止.
(1)在矩形运动过程中,何时矩形的一边恰好通过▱ABCD的边AB或CD的中点.
(2)若矩形运动的同时,点Q从点C出发沿C-D-A-B的路线,以manfen5.com 满分网cm/s的速度运动,矩形停止时点Q也即停止运动,则点Q在矩形一边上运动的时间为多少s?
(3)在矩形运动过程中,当矩形与平行四边形重叠部分为五边形时,求出重叠部分面积S(cm2)与运动时间t(s)之间的函数关系式,并写出时间t的范围.是否存在某一时刻,使得重叠部分的面积S=16.5cm2?若存在,求出时间t,若不存在,说明理由.
manfen5.com 满分网
查看答案
已知:如图,二次函数y=x2+(2k-1)x+k+1的图象与x轴相交于O、A两点.
(1)求这个二次函数的解析式;
(2)在这条抛物线的对称轴右边的图象上有一点B,使锐角△AOB的面积等于3.求点B的坐标;
(3)对于(2)中的点B,在抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.