满分5 > 初中数学试题 >

已知圆P的圆心在反比例函数y=(k>1)图象上,并与x轴相交于A、B两点.且始终...

已知圆P的圆心在反比例函数y=manfen5.com 满分网(k>1)图象上,并与x轴相交于A、B两点.且始终与y轴相切于定点C(0,1).
(1)求经过A、B、C三点的二次函数图象的解析式;
(2)若二次函数图象的顶点为D,问当k为何值时,四边形ADBP为菱形.
manfen5.com 满分网
(1)连接PC、PA、PB,过P点作PH⊥x轴,垂足为H.易得PC⊥y轴,进而可得P的坐标,在Rt△APH中,根据勾股定理可得AB点坐标关于k的表达式,即可得答案; (2)由(1)知抛物线顶点D坐标为(k,1-k2);故DH=k2-1.若四边形ADBP为菱形.则必有PH=DH;代入k,易得k=时,PH=DH.故可得答案. 【解析】 (1)连接PC、PA、PB,过P点作PH⊥x轴,垂足为H.(1分) ∵⊙P与y轴相切于点C(0,1), ∴PC⊥y轴. ∵P点在反比例函数的图象上, ∴P点坐标为(k,1).(2分) ∴PA=PC=k. 在Rt△APH中,AH==, ∴OA=OH-AH=k-. ∴A(k-,0).(3分) ∵由⊙P交x轴于A、B两点,且PH⊥AB,由垂径定理可知,PH垂直平分AB. ∴OB=OA+2AH=k-+2=k+, ∴B(k+,0).(4分) 故过A、B两点的抛物线的对称轴为PH所在的直线解析式为x=k. 可设该抛物线解析式为y=a(x-k)2+h.(5分) 又∵抛物线过C(0,1),B(k+,0), ∴得: 解得a=1,h=1-k2.(7分) ∴抛物线解析式为y=(x-k)2+1-k2.(8分) (2)由(1)知抛物线顶点D坐标为(k,1-k2) ∴DH=k2-1. 若四边形ADBP为菱形.则必有PH=DH.(10分) ∵PH=1, ∴k2-1=1. 又∵k>1, ∴k=(11分) ∴当k取时,PD与AB互相垂直平分,则四边形ADBP为菱形.(12分)
复制答案
考点分析:
相关试题推荐
如图①,在平面直角坐标系中,Rt△AOB≌Rt△CDA,且A(-1,0)、B(0,2),抛物线y=ax2+ax-2经过点C.
(1)求抛物线的解析式;
(2)在抛物线(对称轴的右侧)上是否存在两点P、Q,使四边形ABPQ是正方形?若存在,求点P、Q的坐标,若不存在,请说明理由;
(3)如图②,E为BC延长线上一动点,过A、B、E三点作⊙O′,连接AE,在⊙O′上另有一点F,且AF=AE,AF交BC于点G,连接BF.下列结论:①BE+BF的值不变;②manfen5.com 满分网,其中有且只有一个成立,请你判断哪一个结论成立,并证明成立的结论.
manfen5.com 满分网
查看答案
如图,在直角梯形OBCD中,OB=8,BC=1,CD=10.
(1)求C,D两点的坐标;
(2)若线段OB上存在点P,使PD⊥PC,求过D,P,C三点的抛物线的表达式.

manfen5.com 满分网 查看答案
已知抛物线的函数关系式:y=x2+2(a-1)x+a2-2a(其中x是自变量),
(1)若点P(2,3)在此抛物线上,
①求a的值;
②若a>0,且一次函数y=kx+b的图象与此抛物线没有交点,请你写出一个符合条件的一次函数关系式(只需写一个,不要写过程);
(2)设此抛物线与轴交于点A(x1,0)、B(x2,0).若x1manfen5.com 满分网<x2,且抛物线的顶点在直线x=manfen5.com 满分网的右侧,求a的取值范围.
查看答案
如图1,设抛物线y=manfen5.com 满分网x2-manfen5.com 满分网交x轴于A,B两点,顶点为D.以BA为直径作半圆,圆心为M,半圆交y轴负半轴于C.
(1)求抛物线的对称轴;
(2)将△ACB绕圆心M顺时针旋转180°,得到三角形APB,如图2.求点P的坐标;
(3)有一动点Q在线段AB上运动,△QCD的周长在不断变化时是否存在最小值?若存在,求点Q的坐标;若不存在,说明理由.
manfen5.com 满分网
查看答案
如图,在平面直角坐标系中,以点C(0,4)为圆心,半径为4的圆交y轴正半轴于点A,AB是⊙C的切线.动点P从点A开始沿AB方向以每秒1个单位长度的速度运动,点Q从O点开始沿x轴正方向以每秒4个单位长度的速度运动,且动点P、Q从点A和点O同时出发,设运动时间为t(秒).
(1)当t=1时,得到P1、Q1两点,求经过A、P1、Q1三点的抛物线解析式及对称轴l;
(2)当t为何值时,直线PQ与⊙C相切并写出此时点P和点Q的坐标;
(3)在(2)的条件下,抛物线对称轴l上存在一点N,使NP+NQ最小,求出点N的坐标并说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.